Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk

Abstract

Variants in GDF5 are associated with human arthritis and decreased height, but the causal mutations are still unknown. We surveyed the Gdf5 locus for regulatory regions in transgenic mice and fine-mapped separate enhancers controlling expression in joints versus growing ends of long bones. A large downstream regulatory region contains a novel growth enhancer (GROW1), which is required for normal Gdf5 expression at ends of developing bones and for normal bone lengths in vivo. Human GROW1 contains a common base-pair change that decreases enhancer activity and colocalizes with peaks of positive selection in humans. The derived allele is rare in Africa but common in Eurasia and is found in Neandertals and Denisovans. Our results suggest that an ancient regulatory variant in GROW1 has been repeatedly selected in northern environments and that past selection on growth phenotypes explains the high frequency of a GDF5 haplotype that also increases arthritis susceptibility in many human populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A regulatory scan of the Gdf5 region.
Figure 2: Downstream BAC rescues long-bone and digit growth.
Figure 3: Fine-mapping of a human GDF5 growth-collar enhancer.
Figure 4: A functional variant in the human GDF5 growth-plate enhancer.
Figure 5: rs4911178 global allele frequencies and signatures of selection in the GROW1B region.
Figure 6: Evolutionary history of the GDF5 locus in humans.
Figure 7: GROW1 regulates long-bone length in vivo.

Similar content being viewed by others

References

  1. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Loughlin, J. Genetic contribution to osteoarthritis development: current state of evidence. Curr. Opin. Rheumatol. 27, 284–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miyamoto, Y. et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, R. et al. A comprehensive meta-analysis of association between genetic variants of GDF5 and osteoarthritis of the knee, hip and hand. Inflamm. Res. 64, 405–414 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Williams, F.M. et al. GDF5 single-nucleotide polymorphism rs143383 is associated with lumbar disc degeneration in Northern European women. Arthritis Rheum. 63, 708–712 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai, J. et al. Association of a single nucleotide polymorphism in growth differentiate factor 5 with congenital dysplasia of the hip: a case-control study. Arthritis Res. Ther. 10, R126 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Posthumus, M. et al. Components of the transforming growth factor-beta family and the pathogenesis of human Achilles tendon pathology: a genetic association study. Rheumatology (Oxford) 49, 2090–2097 (2010).

    Article  CAS  Google Scholar 

  8. Ge, W., Mu, J. & Huang, C. The GDF5 SNP is associated with meniscus injury and function recovery in male Chinese soldiers. Int. J. Sports Med. 35, 625–628 (2014).

    CAS  PubMed  Google Scholar 

  9. Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40, 198–203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaes, R.B. et al. Genetic variation in the GDF5 region is associated with osteoarthritis, height, hip axis length and fracture risk: the Rotterdam study. Ann. Rheum. Dis. 68, 1754–1760 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Voight, B.F., Kudaravalli, S., Wen, X. & Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sabeti, P.C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amato, R., Miele, G., Monticelli, A. & Cocozza, S. Signs of selective pressure on genetic variants affecting human height. PLoS One 6, e27588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, D.D., Li, G.M., Jin, W., Li, Y. & Zhang, Y.P. Positive selection on the osteoarthritis-risk and decreased-height associated variants at the GDF5 gene in East Asians. PLoS One 7, e42553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grüneberg, H. & Lee, A.J. The anatomy and development of brachypodism in the mouse. J. Embryol. Exp. Morphol. 30, 119–141 (1973).

    PubMed  Google Scholar 

  16. Storm, E.E. et al. Limb alterations in brachypodism mice due to mutations in a new member of the TGF β-superfamily. Nature 368, 639–643 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Mikic, B., Clark, R.T., Battaglia, T.C., Gaschen, V. & Hunziker, E.B. Altered hypertrophic chondrocyte kinetics in GDF-5 deficient murine tibial growth plates. J. Orthop. Res. 22, 552–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Harada, M. et al. Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthritis Cartilage 15, 468–474 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Daans, M., Luyten, F.P. & Lories, R.J. GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes. Ann. Rheum. Dis. 70, 208–213 (2011).

    Article  PubMed  Google Scholar 

  20. Thomas, J.T. et al. A human chondrodysplasia due to a mutation in a TGF-β superfamily member. Nat. Genet. 12, 315–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Polinkovsky, A. et al. Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat. Genet. 17, 18–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Savarirayan, R. et al. Broad phenotypic spectrum caused by an identical heterozygous CDMP-1 mutation in three unrelated families. Am. J. Med. Genet. A. 117A, 136–142 (2003).

    Article  PubMed  Google Scholar 

  23. Seemann, P. et al. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J. Clin. Invest. 115, 2373–2381 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Southam, L. et al. An SNP in the 5′-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. Hum. Mol. Genet. 16, 2226–2232 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Gudbjartsson, D.F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40, 609–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40, 584–591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weedon, M.N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40, 575–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soranzo, N. et al. Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet. 5, e1000445 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mortlock, D.P., Guenther, C. & Kingsley, D.M. A general approach for identifying distant regulatory elements applied to the Gdf6 gene. Genome Res. 13, 2069–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, H. et al. Heads, shoulders, elbows, knees, and toes: modular Gdf5 enhancers control different joints in the vertebrate skeleton. PLoS Genet. 12, e1006454 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  Google Scholar 

  34. Dodd, A.W. et al. Deep sequencing of GDF5 reveals the absence of rare variants at this important osteoarthritis susceptibility locus. Osteoarthritis Cartilage 19, 430–434 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Henn, B.M., Gravel, S., Moreno-Estrada, A., Acevedo-Acevedo, S. & Bustamante, C.D. Fine-scale population structure and the era of next-generation sequencing. Hum. Mol. Genet. 19, R2, R221–R226 (2010).

    Article  CAS  Google Scholar 

  36. Henn, B.M. et al. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet. 8, e1002397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grossman, S.R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Green, R.E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blake, J.A. et al. Mouse Genome Database (MGD)-2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res. 45, D1, D723–D729 (2017).

    Article  CAS  Google Scholar 

  43. Petit, F., Sears, K.E. & Ahituv, N. Limb development: a paradigm of gene regulation. Nat. Rev. Genet. 18, 245–258 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Ingram, C.J. et al. A novel polymorphism associated with lactose tolerance in Africa: multiple causes for lactase persistence? Hum. Genet. 120, 779–788 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Eiberg, H. et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum. Genet. 123, 177–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Guenther, C.A., Tasic, B., Luo, L., Bedell, M.A. & Kingsley, D.M. A molecular basis for classic blond hair color in Europeans. Nat. Genet. 46, 748–752 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allen, J. The influence of physical conditions in the genesis of species. Radical Review 1, 108–140 (1877).

    Google Scholar 

  48. Betti, L., Lycett, S.J., von Cramon-Taubadel, N. & Pearson, O.M. Are human hands and feet affected by climate? A test of Allen's rule. Am. J. Phys. Anthropol. 158, 132–140 (2015).

    Article  PubMed  Google Scholar 

  49. Holliday, T.W. Postcranial evidence of cold adaptation in European Neandertals. Am. J. Phys. Anthropol. 104, 245–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Weaver, T.D. The shape of the Neandertal femur is primarily the consequence of a hyperpolar body form. Proc. Natl. Acad. Sci. USA 100, 6926–6929 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eriksson, N. et al. Over 250 novel associations with human morphological traits. in 60th Annual Meeting of Am. Soc. Hum. Genet. (American Society of Human Genetics, 2012).

  52. Leslie, W.D. et al. Adjusting hip fracture probability in men and women using hip axis length: the Manitoba Bone Density Database. J. Clin. Densitom. 19, 326–331 (2016).

    Article  PubMed  Google Scholar 

  53. Abi-Rached, L. et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334, 89–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mendez, F.L., Watkins, J.C. & Hammer, M.F. A haplotype at STAT2 introgressed from neanderthals and serves as a candidate of positive selection in Papua New Guinea. Am. J. Hum. Genet. 91, 265–274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hamilton, W.D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).

    Article  CAS  PubMed  Google Scholar 

  57. Pickrell, J.K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Settle, S.H. Jr. et al. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev. Biol. 254, 116–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, L., Mali, P., Kim-Kiselak, C. & Church, G. CRISPR-Cas-mediated targeted genome editing in human cells. Methods Mol. Biol. 1114, 245–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. McLeod, M.J. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22, 299–301 (1980).

    Article  CAS  PubMed  Google Scholar 

  62. Ward, L.D. & Kellis, M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D1, D877–D881 (2016).

    Article  CAS  Google Scholar 

  63. Newburger, D.E. & Bulyk, M.L. UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res. 37, D77–D82 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Hume, M.A., Barrera, L.A., Gisselbrecht, S.S. & Bulyk, M.L. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res. 43, D117–D122 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Reno, P.L., Kjosness, K.M. & Hines, J.E. The role of Hox in pisiform and calcaneus growth plate formation and the nature of the zeugopod/autopod boundary. J. Exp. Zool. B Mol. Dev. Evol. 326, 303–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Villavicencio-Lorini, P. et al. Homeobox genes d11-d13 and a13 control mouse autopod cortical bone and joint formation. J. Clin. Invest. 120, 1994–2004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Hiller and G. Renaud for assistance with Neandertal and Denisovan sequence data; E. Eichler and M. Malig (University of Washington) for human fosmids; C. Lowe and F. Jones for assistance with 1000 Genomes data analysis; P. Arlotta, H.H. Chen, L. Wu, E. Brown, and M. Guo for assistance with CRISPR–Cas9 gene targeting; M. Bouxsein, D. Brooks, and M. Armanini (MGH Center for Skeletal Research Imaging and Biomechanical Testing Core (NIH P30 AR066261)) for assistance with μCT experiments; and G. Bejerano, K. Guenther, D. Mortlock, A. Pollen, and members of the laboratories of D.M.K. and T.D.C. for useful scientific discussions. This work was funded in part by grants from NSERC (RGPIN-435973-2013, A.C.D.), the Arthritis Foundation (H.C. and M.S.), the NIH (AR42236, D.M.K.), the Milton Fund of Harvard (T.D.C.), the China Scholarship Council (J.C.), and the Jason S. Bailey Fund of Harvard (J.C.). D.M.K. is supported an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.D.C. and D.M.K. conceived and oversaw the project. H.C. and M.S. designed BAC transgenic mice. M.S., H.C., and T.D.C. performed mouse rescue experiments and phenotyping. J.C. and T.D.C. performed GROW1 CRISPR–Cas9 gene editing, mouse breeding, genotyping, and phenotyping. A.M.K. and T.D.C. performed morphometric analyses on GROW1 μCT specimens. T.D.C. performed in situ hybridization expression experiments, identified and fine-mapped the growth-enhancer region, conducted coding SNP analyses, UniPROBE analyses, and HaploRegV.4.1 analyses, and performed all in vitro and in vivo tests of the effects of the rs4911178 polymorphism. T.D.C. and A.C.D. performed allele frequency, initial haplotype detection, and CMS analyses. A.C.D. processed 1000 Genomes and archaic hominin data sets; performed haplotype and visual genotype analyses, and tree-building experiments; and provided input into all computational assays. T.D.C. and D.M.K. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Terence D Capellini or David M Kingsley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, 14 and 15, and Supplementary Note. (PDF 13966 kb)

Supplementary Table 1

Allele frequencies for 1000 Genomes SNPs across 400-kb interval centered on the GDF5 locus. (XLSX 436 kb)

Supplementary Table 2

r2 linkage calculations between rs4911178 and other SNPs within 400-kb interval for all populations and continents. (XLSX 177 kb)

Supplementary Table 3

Phased 1000 Genomes haplotypes for individuals used in this study including haplotypes for archaic hominins, chimpanzee reference (panTro3) and human reference (hg19). (XLSX 7353 kb)

Supplementary Table 4

Total counts of the different 1000 Genomes population haplotypes within clades identified through phylogenetic analyses based on reduced tree used in Figure 6. (XLSX 39 kb)

Supplementary Table 5

1000 Genomes SNP frequencies in different clades for the major height and osteoarthritis GWAS variants addressed in this study based on reduced tree used in Figure 6. (XLSX 46 kb)

Supplementary Table 6

Divergence calculations for Neandertal versus all haplotypes within A, B, and B* identified in this study. (XLSX 165 kb)

Supplementary Table 7

Transcription factor binding site analysis of rs4911178. (XLSX 126 kb)

Supplementary Table 8

Primer locations, sequences, and source DNA used for constructs and genotyping in this study. (XLSX 41 kb)

Supplementary Figure 11

Maximum-likelihood analysis of 1000 Genomes, Neandertal, Denisovan, and chimpanzee haplotypes using phased variants. (PDF 3086 kb)

Supplementary Figure 12

Maximum-likelihood analysis and visual genotyping of human 1000 Genomes, Neandertal, Denisovan, and chimpanzee haplotypes using all 1,489 phased variants at MAF ≥0.05. (PDF 871 kb)

Supplementary Figure 13

Maximum-likelihood analysis and visual genotyping of human 1000 Genomes, Neandertal, Denisovan, and chimpanzee haplotypes using all 1,489 phased variants at MAF ≥0.01. (PDF 1851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capellini, T., Chen, H., Cao, J. et al. Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk. Nat Genet 49, 1202–1210 (2017). https://doi.org/10.1038/ng.3911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing