Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain

Abstract

We report locus-specific disintegration of megabase-scale chromosomal conformations in brain after neuronal ablation of Setdb1 (also known as Kmt1e; encodes a histone H3 lysine 9 methyltransferase), including a large topologically associated 1.2-Mb domain conserved in humans and mice that encompasses >70 genes at the clustered protocadherin locus (hereafter referred to as cPcdh). The cPcdh topologically associated domain (TADcPcdh) in neurons from mutant mice showed abnormal accumulation of the transcriptional regulator and three-dimensional (3D) genome organizer CTCF at cryptic binding sites, in conjunction with DNA cytosine hypomethylation, histone hyperacetylation and upregulated expression. Genes encoding stochastically expressed protocadherins were transcribed by increased numbers of cortical neurons, indicating relaxation of single-cell constraint. SETDB1-dependent loop formations bypassed 0.2–1 Mb of linear genome and radiated from the TADcPcdh fringes toward cis-regulatory sequences within the cPcdh locus, counterbalanced shorter-range facilitative promoter–enhancer contacts and carried loop-bound polymorphisms that were associated with genetic risk for schizophrenia. We show that the SETDB1 repressor complex, which involves multiple KRAB zinc finger proteins, shields neuronal genomes from excess CTCF binding and is critically required for structural maintenance of TADcPcdh.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D genomes in Setdb1-deficient cortical neurons.
Figure 2: Histone modification and CTCF landscapes in Setdb1-deficient neuronal nuclei.
Figure 3: DNA methylation profiling at the cPcdh locus.
Figure 4: Transcriptional dysregulation at the cPcdh locus.
Figure 5: Epigenomic editing at the cPcdh locus.
Figure 6: Regulatory mechanisms at human and mouse TADcPcdh.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Rao, S.S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dekker, J., Marti-Renom, M.A. & Mirny, L.A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merkenschlager, M. & Nora, E.P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet. 17, 17–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Cubeñas-Potts, C. & Corces, V.G. Topologically associating domains: an invariant framework or a dynamic scaffold? Nucleus 6, 430–434 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schultz, D.C., Ayyanathan, K., Negorev, D., Maul, G.G. & Rauscher, F.J. III. SETDB1: a novel KAP-1-associated histone H3, lysine 9–specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan, S.L. et al. Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development 139, 3806–3816 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Rowe, H.M. et al. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs–KAP1 and ESET. Development 140, 519–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Leung, D. et al. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1. Proc. Natl. Acad. Sci. USA 111, 6690–6695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elsässer, S.J., Noh, K.M., Diaz, N., Allis, C.D. & Banaszynski, L.A. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522, 240–244 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chen, W.V. & Maniatis, T. Clustered protocadherins. Development 140, 3297–3302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yagi, T. Molecular codes for neuronal individuality and cell assembly in the brain. Front. Mol. Neurosci. 5, 45 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhan, Y. et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 27, 479–490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flavahan, W.A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Guo, Y. et al. CTCF–cohesin-mediated DNA looping is required for protocadherin-α promoter choice. Proc. Natl. Acad. Sci. USA 109, 21081–21086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Renda, M. et al. Critical DNA binding interactions of the insulator protein CTCF: a small number of zinc fingers mediate strong binding, and a single finger–DNA interaction controls binding at imprinted loci. J. Biol. Chem. 282, 33336–33345 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Du, J., Johnson, L.M., Jacobsen, S.E. & Patel, D.J. DNA methylation pathways and their cross-talk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paliwal, A. et al. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation. PLoS Genet. 9, e1003622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer–promoter function. Cell 162, 900–910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kehayova, P., Monahan, K., Chen, W. & Maniatis, T. Regulatory elements required for the activation and repression of the protocadherin-α gene cluster. Proc. Natl. Acad. Sci. USA 108, 17195–17200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monahan, K. et al. Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-α gene expression. Proc. Natl. Acad. Sci. USA 109, 9125–9130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ribich, S., Tasic, B. & Maniatis, T. Identification of long-range regulatory elements in the protocadherin-α gene cluster. Proc. Natl. Acad. Sci. USA 103, 19719–19724 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yokota, S. et al. Identification of the cluster control region for the protocadherin-β genes located beyond the protocadherin-γ cluster. J. Biol. Chem. 286, 31885–31895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, Y. et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J. Neurosci. 30, 7152–7167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schaefer, A. et al. Control of cognition and adaptive behavior by the GLP–G9a epigenetic suppressor complex. Neuron 64, 678–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thu, C.A. et al. Single-cell identity generated by combinatorial homophilic interactions between α−, β− and γ-protocadherins. Cell 158, 1045–1059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Toyoda, S. et al. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single-neuron diversity. Neuron 82, 94–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Keeler, A.B., Molumby, M.J. & Weiner, J.A. Protocadherins branch out: multiple roles in dendrite development. Cell Adh. Migr. 9, 214–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chakravarthy, S. et al. Cre-dependent expression of multiple transgenes in isolated neurons of the adult forebrain. PLoS One 3, e3059 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chernukhin, I. et al. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome wide. Mol. Cell. Biol. 27, 1631–1648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holwerda, S.J. & de Laat, W. CTCF: the protein, the binding partners, the binding sites and their chromatin loops. Phil. Trans. R. Soc. Lond. B 368, 20120369 (2013).

    Article  CAS  Google Scholar 

  39. Golan-Mashiach, M. et al. Identification of CTCF as a master regulator of the clustered protocadherin genes. Nucleic Acids Res. 40, 3378–3391 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S. & Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  42. Iyengar, S., Ivanov, A.V., Jin, V.X., Rauscher, F.J. III & Farnham, P.J. Functional analysis of KAP1 genomic recruitment. Mol. Cell. Biol. 31, 1833–1847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frietze, S., O'Geen, H., Blahnik, K.R., Jin, V.X. & Farnham, P.J. ZNF274 recruits the histone methyltransferase SETDB1 to the 3′ ends of ZNF genes. PLoS One 5, e15082 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Heidari, N. et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 24, 1905–1917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bailey, S.D. et al. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters. Nat. Commun. 2, 6186 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Xie, D. et al. Dynamic trans-acting factor colocalization in human cells. Cell 155, 713–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, Q. et al. Chromosomal microarray analysis in clinical evaluation of neurodevelopmental disorders—reporting a novel deletion of SETDB1 and illustration of counseling challenge. Pediatr. Res. 80, 371–381 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cukier, H.N. et al. The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6 and SETDB1. Autism Res. 5, 385–397 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mendioroz, M. et al. Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol. 16, 263 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Garafola, C.S. & Henn, F.A. A change in hippocampal protocadherin-γ expression in a learned helpless rat. Brain Res. 1593, 55–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Suderman, M. et al. Conserved epigenetic sensitivity to early-life experience in the rat and human hippocampus. Proc. Natl. Acad. Sci. USA 109 (Suppl. 2), 17266–17272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McGowan, P.O. et al. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6, e14739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Labonté, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. (in the press).

  54. Hirayama, T., Tarusawa, E., Yoshimura, Y., Galjart, N. & Yagi, T. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2, 345–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Bharadwaj, R. et al. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 84, 997–1008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, K. et al. Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Proc. Natl. Acad. Sci. USA 112, E3535–E3544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Isbel, L. et al. Wiz binds active promoters and CTCF-binding sites and is required for normal behavior in the mouse. eLife 5, e15082 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Redin, C. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat. Genet. 49, 36–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Kundakovic, M. et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in post-mortem human brain tissue. Biol. Psychiatry 81, 162–170 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Shen, L. et al. diffReps: detecting differential chromatin modification sites from ChIP–seq data with biological replicates. PLoS One 8, e65598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crane, E. et al. Condensin-driven remodeling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, L.C. & Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Krueger, F. & Andrews, S.R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, J. et al. Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.163 (2016).

  70. Topol, A. et al. Dysregulation of miRNA-9 in a subset of schizophrenia patient–derived neural progenitor cells. Cell Rep. 15, 1024–1036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Gonzalez-Maeso (Virginia Commonwealth University) for kindly providing the Camk2a promoter plasmid. The work was supported by US National Institutes of Health (NIH) grants R01MH106056 (S.A.), P50MH096890 (E.J.N.), R01MH101454 (K.J.B.), NIA U01P50AG005138-30-1 (K.J.B.), U01AG046170 (K.J.B.), R01AG050986 (P. Roussos), R01MH109677, (P. Roussos) and R01NS091574 (A.S.), NIH training grant T32-AG049688 (S.C.) and NIH fellowship award 1F30MH113330 (P. Rajarajan). Additional support was provided by a Grant-in-Aid for AMED-CREST, AMED, Japan (T.Y.), the Japan–US Brain Research Cooperation Program (T.Y.), the Veterans Affairs Merit grant BX002395 (P. Roussos), the Brain and Behavior Research Foundation (Y.J. and P. Roussos), the Alzheimer's Association (P. Roussos), the New York Stem Cell Foundation (K.J.B.) and the Brain Research Foundation (S.A.).

Author information

Authors and Affiliations

Authors

Contributions

Y.J., P. Rajarajan, T.H., B.S.K., B.J.H., S.-M.H., B.J., L.K., R.B.P., S.C., C.D., C.J.P., J.T.C.W. and B.M.S. performed experiments; Y.J. and S.A. conceived and designed experiments; Y.J. performed statistical analyses; Y.-H.E.L., P. Rajarajan, W.L., P. Roussos and L.S. performed bioinformatics and genomic analyses; A.S., B.R.R. (G9a and GLP transcriptome data), B.L. and E.J.N. (mouse stress model and transcriptome data) contributed materials; B.T. supervised the DNA methylation analysis; H.M., K.J.B., T.Y., L.S. and S.A. supervised the research; Y.J., Y.-H.E.L., B.T., L.S. and S.A. wrote the paper with contributions from the other co-authors.

Corresponding author

Correspondence to Schahram Akbarian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 and Supplementary Note (PDF 37458 kb)

Supplementary Table 1

Genome-wide epigenetic profiling of H3K9me3 in conditional CKCre+, Setdb1(2lox/2lox) mutant cortical neurons as compared to CK-Cre-, Setdb1(2lox/2lox) controls. N=3mice/genotype (2female, 1male). Adjusted P1.5. Mouse genome build mm10. (XLSX 184 kb)

Supplementary Table 2

Genome-wide epigenetic profiling of H3K27ac in conditional CKCre+, Setdb1(2lox/2lox) mutant cortical neurons as compared to CK-Cre-, Setdb1(2lox/2lox) controls. N=3 mice/genotype (all males). Adjusted P < 0.05. FC > 2. Mouse genome build mm10. (XLSX 108 kb)

Supplementary Table 3

Genome-wide epigenetic profiling of H3K9me3 in cortical nonneuronal (NeuN-) nuclei from conditional CK-Cre+, Setdb1(2lox/2lox) mutant, as compared to CK-Cre-, Setdb1(2lox/2lox) controls. N=3mice/genotype (2female, 1male). Adjusted P < 0.05 and FC > 1.5. Mouse genome build mm10. (XLSX 32 kb)

Supplementary Table 4

Genome-wide epigenetic profiling of H3K27ac in cortical nonneuronal (NeuN-) nuclei from conditional CK-Cre+, Setdb1(2lox/2lox) mutant, as compared to CK-Cre-, Setdb1(2lox/2lox) controls. N=3mice/genotype (2female, 1male). Adjusted P < 0.05 and FC > 2. Mouse genome build mm10. (XLSX 10 kb)

Supplementary Table 5

Homer motif search for genomic sequence with significant downregulated H3K9me3 hits in conditional CK-Cre+, Setdb1(2lox/2lox) mutant cortical neurons as compared to CK-Cre-, Setdb1(2lox/2lox) controls. Q-value < 0.05. CTCF motifs highlighted in yellow. (XLSX 10 kb)

Supplementary Table 6

Homer motif enrichment for genomic sequence with Setdb1 occupancy in mouse embryonic stem cell (Yuan P et al. 2009, Genes & Development). CTCF motifs are highlighted in yellow. (XLSX 15 kb)

Supplementary Table 7

Homer motif enrichment for genomic sequence with Setdb1 occupancy in CD19+ B cells (Pasquarella A. et al., 2016 Development). CTCF motifs are highlighted in yellow. (XLSX 26 kb)

Supplementary Table 8

Genome-wide epigenetic profiling of CTCF in conditional CK-Cre+, Setdb1(2lox/2lox) mutant cortical neurons as compared to CK-Cre-, Setdb1(2lox/2lox) controls. N=4 mice/genotype (3 female, 1 male). Adjusted P < 0.05. FC > 2. Mouse genome build mm10. (XLSX 282 kb)

Supplementary Table 9

Homer motif enrichment for genomic sequence with significantly up-regulated CTCF hits in CK-Cre+, Setdb1(2lox/2lox) mutant cortical neurons as compared to CK-Cre-, Setdb1(2lox/2lox) control cortical neurons. CTCF motifs are highlighted in yellow. (XLSX 17 kb)

Supplementary Table 10

Homer motif enrichment for genomic sequence with de novo CTCF peaks in CK-Cre+, Setdb1(2lox/2lox) mutant cortical neurons. CTCF motifs are highlighted in yellow (XLSX 21 kb)

Supplementary Table 11

Genome-wide comparison of CTCF and H3K9me3 alterations (DiffReps) in NeuN+ (adult cortex) of conditional CK-Cre+, Setdb1(2lox/2lox) mutant, as compared to CK-Cre-, Setdb1(2lox/2lox) controls. (XLSX 13 kb)

Supplementary Table 12

DNA methylation percentage of all amplicons at cPcdh sequences using neuronal and non-neuronal nuclei in cortex, striatum and cerebellum from CK-Cre+, Setdb1(2lox/2lox) mutant, as compared to CK-Cre-, Setdb1(2lox/2lox) controls. N=3-5mice/group. Mouse genome build mm10. (XLSX 39 kb)

Supplementary Table 13

Summary statistics DNA methylation at cis-regulatory cPcdh sequences (K = knock-out, W = wildtype, C=cerebral cortex, S=striatum, CB=Cerebellum, P= positive (NeuN immunoreactive), N=negative (non-NeuN). (XLSX 20 kb)

Supplementary Table 14

Differential transcriptome in conditional CK-Cre+, Setdb1(2lox/2lox) mutant prefrontal cortex as compared to CK-Cre-, Setdb1(2lox/2lox) controls. N=2mice/genotype (all female), adjusted P< 0.05. Mouse genome build mm10. (XLSX 47 kb)

Supplementary Table 15

Transgenic rescue of clustered Protocadherins. Mean±S.E.M. summarizing RNA quantification from Pcdh α, β, and γ clusters in prefrontal cortex of adult WT, TG, KO and RC mice (N=6/group), *P (XLSX 18 kb)

Supplementary Table 16

primer list (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Loh, YH., Rajarajan, P. et al. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat Genet 49, 1239–1250 (2017). https://doi.org/10.1038/ng.3906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3906

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing