Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

Abstract

Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plots of lung cancer risk overall and by histological subtype.
Figure 2: Scatterplots of the 6q27, 15q21.1, 8p12 and 11q23.3 susceptibility loci and their association with lung cancer and lung cis-eQTLs.
Figure 3: eQTL and smoking behavior analysis of the 8p21 lung cancer susceptibility locus.

Similar content being viewed by others

References

  1. Ferlay, J. et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 (International Agency for Research on Cancer, 2013).

  2. Mucci, L.A. et al. Familial risk and heritability of cancer among twins in Nordic countries. J. Am. Med. Assoc. 315, 68–76 (2016).

    Article  CAS  Google Scholar 

  3. Timofeeva, M.N. et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum. Mol. Genet. 21, 4980–4995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, Y. et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 46, 736–741 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amos, C.I. et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomarkers Prev. 26, 126–135 (2017).

    Article  PubMed  Google Scholar 

  6. Wang, Y. et al. Deciphering associations for lung cancer risk through imputation and analysis of 12,316 cases and 16,831 controls. Eur. J. Hum. Genet. 23, 1723–1728 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Durham, A.L. & Adcock, I.M. The relationship between COPD and lung cancer. Lung Cancer 90, 121–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, H. et al. A novel genetic variant in long non-coding RNA gene NEXN-AS1 is associated with risk of lung cancer. Sci. Rep. 6, 34234 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGovern, D.P. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum. Mol. Genet. 19, 3468–3476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, S.K. et al. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 63, 80–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Brenner, D.R. et al. Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls. Hum. Genet. 132, 579–589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moulton, E.A., Elman, I., Becerra, L.R., Goldstein, R.Z. & Borsook, D. The cerebellum and addiction: insights gained from neuroimaging research. Addict. Biol. 19, 317–331 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yu, C.T. et al. The novel protein suppressed in lung cancer down-regulated in lung cancer tissues retards cell proliferation and inhibits the oncokinase Aurora-A. J. Thorac. Oncol. 6, 988–997 (2011).

    Article  PubMed  Google Scholar 

  17. Fernandez-Cuesta, L. et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 4, 415–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Lan, Q. et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat. Genet. 44, 1330–1335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Landi, M.T. et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum. Genet. 85, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Truong, T. et al. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl. Cancer Inst. 102, 959–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walsh, K.M. et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat. Genet. 46, 731–735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45, 422–427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, C. et al. Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Hum. Mol. Genet. 24, 5356–5366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walsh, K.M. et al. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget 6, 42468–42477 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fehringer, G. et al. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate and colorectal cancer reveals novel pleiotropic associations. Cancer Res. 76, 5103–5114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amundadottir, L.T. et al. Cancer as a complex phenotype: pattern of cancer distribution within and beyond the nuclear family. PLoS Med. 1, e65 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lindelöf, B. & Eklund, G. Analysis of hereditary component of cancer by use of a familial index by site. Lancet 358, 1696–1698 (2001).

    Article  PubMed  Google Scholar 

  28. Li, Y. et al. FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data. BMC Bioinformatics 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  31. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, J. & Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95, 221–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hao, K. et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet. 8, e1003029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, J. et al. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue. Nat. Commun. 27, 3365 (2014).

    Article  Google Scholar 

  36. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  37. Soler Artigas, M. et al. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat. Commun. 6, 8658 (2015).

    Article  PubMed  Google Scholar 

  38. Pooley, K.A. et al. Telomere length in prospective and retrospective cancer case–control studies. Cancer Res. 70, 3170–3176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

  42. Hemminki, K. & Bermejo, J.L. Relationships between familial risks of cancer and the effects of heritable genes and their SNP variants. Mutat. Res. 592, 6–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bahcall, O.G. iCOGS collection provides a collaborative model. Nat. Genet. 45, 343 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Transdisciplinary Research for Cancer in Lung (TRICL) of the International Lung Cancer Consortium (ILCCO) was supported by grants U19-CA148127 and CA148127S1. ILCCO data harmonization is supported by the Cancer Care Ontario Research Chair of Population Studies to R.J.H. and the Lunenfeld-Tanenbaum Research Institute, Sinai Health System. Additional funding information is provided in the Supplementary Note.

The TRICL-ILCCO OncoArray was supported by in-kind genotyping by the Centre for Inherited Disease Research (26820120008i-0-26800068-1).

IARC acknowledges and thanks V. Gaborieau, M. Foll, L. Fernandez-Cuesta, P. Chopard, T. Delhomme and A. Chabrier for their technical assistance in this project.

The authors would like to thank the staff at the Respiratory Health Network Tissue Bank of the FRQS for their valuable assistance with the lung eQTL data set at Laval University. The lung eQTL study at Laval University was supported by the Fondation de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, the Respiratory Health Network of the FRQS and the Canadian Institutes of Health Research (MOP-123369). Y. Bossé holds a Canada Research Chair in Genomics of Heart and Lung Diseases.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Drafting of the manuscript: J.D.M., R.J.H., C.I.A. Project coordination: C.I.A., J.D.M., R.J.H., D.C.C., N.E.C., S.C., P. Brennan, M.T.L. Statistical analysis: C.I.A., J.D.M., R.J.H., Y.H., X.Z., R.C.T., X. Ji, X.X., Y.L., J. Byun, K.A.P., D.C.Q., M.N.T., Y. Brhane, D. Zhu. eQTL analysis of candidate variants: J.D.M., Y. Bossé, R.C.T., M.T.L., B.Z., L. Su, M.T.L., M.L. Genomic annotation of candidate variants: D.C.Q., G.C.T., J. Beesley, R.F.T. Assessment of the impact of candidate variants on nicotine addiction: J.D.M., T.R., T.E.T., G.W.R., K.S., D.B.H., L.J.B., R.J.H., SPIRO, L.K., N.C.G., S.M.L., F.G., E.O.J. Assessment of the impact of candidate variants on telomere length: J.D.M., R.J.H., K.A.P., A.D., L.K. Assessment of the impact of candidate variants on lung function: M.D. Tobin, M.S.A., L.V.W., L.K. Sample collection and development of the epidemiological studies: R.J.H., T.R., T.E.T., G.W.R., D.C.C., N.E.C., M.J., G.L., S.E.B., X.W., L.L.M., D.A., H. Bickeböller, M.C.A., W.S.B., A. Tardon, G.R., M.D.T., J.K.F., L.A.K., P.L., A.H., S. Lam, M.B.S., A.S.A., H.S., Y.C.H., J.M.Y., P.A.B., A.C.P., Y.Y., N.D., L. Su, R.Z., Y. Bossé, N.L., J.S.J., A. Mellemgaard, W.S., C.A.H., L.R.W., A.F.-S., G.F.-T., H.F.M.v.d.H., J.H.K., J.D., Z.H., M.P.A.D., M.W.M., H. Brunnström, J. Manjer, O.M., D.C.M., K.O., A. Trichopoulou, R.T., J.A.D., M.P.B., C.C., G.E.G., A.C., F.T., P.W., I.B., H.-E.W., J. Manz, T.R.M., A. Risch, A. Rosenberger, K.G., M.J., F.A.S., M.-S.T., S.M.A., E.B.H., C.B., I.H., V.J., M.K., J.L., A. Mukeria, S.O., T.M.O., G.S., B.S., D. Zaridze, P. Bakke, V.S., S.Z., E.J.D., L.M.B., W.-P.K., Y.-T.G., R.S.H., J. McLaughlin, V.L.S., P.J., M.L., D.C.N., M.O., W.T., L. Song, M.S.A., M.D. Teare, M.R.S., A.K., C.P., R.J.H., J.D.M., M.T.L. Genetic sharing analysis: R.C.T., S. Lindströem, X. Jiang, J.D.M., R.J.H.

Corresponding author

Correspondence to Christopher I Amos.

Ethics declarations

Competing interests

T.R., T.E.T., G.W.R. and K.S. are employees of the biotechnology company deCODE Genetics, a subsidiary of Amgen.

Additional information

A list of members appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1, 3–6, 8 and 9, and Supplementary Note. (PDF 8760 kb)

Supplementary Table 2

Results from analysis for SNPs with P <1 × 10–5 for overall lung cancer and subsets defined by histology and smoking status. (XLSX 3937 kb)

Supplementary Table 7

Genomic annotations of loci containing sentinel variants. (XLSX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKay, J., Hung, R., Han, Y. et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet 49, 1126–1132 (2017). https://doi.org/10.1038/ng.3892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3892

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer