Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Between-region genetic divergence reflects the mode and tempo of tumor evolution

Abstract

Given the implications of tumor dynamics for precision medicine, there is a need to systematically characterize the mode of evolution across diverse solid tumor types. In particular, methods to infer the role of natural selection within established human tumors are lacking. By simulating spatial tumor growth under different evolutionary modes and examining patterns of between-region subclonal genetic divergence from multiregion sequencing (MRS) data, we demonstrate that it is feasible to distinguish tumors driven by strong positive subclonal selection from those evolving neutrally or under weak selection, as the latter fail to dramatically alter subclonal composition. We developed a classifier based on measures of between-region subclonal genetic divergence and projected patient data into model space, finding different modes of evolution both within and between solid tumor types. Our findings have broad implications for how human tumors progress, how they accumulate intratumoral heterogeneity, and ultimately how they may be more effectively treated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview of the simulation framework and the genomic data analysis pipeline.
Figure 2: Characteristics of virtual tumors simulated under different modes of evolution.
Figure 3: Colorectal tumors exhibit patterns of between-region genetic divergence consistent with effectively neutral growth or selection.
Figure 4: Single-gland WES shows spatial constraints among subclonal mutations.
Figure 5: The SFS reflects differential modes of evolution within and between tumor types.
Figure 6: Projection of patient samples onto distinct evolutionary modes.

Accession codes

Primary accessions

ArrayExpress

References

  1. 1

    Nordling, C.O. A new theory on cancer-inducing mechanism. Br. J. Cancer 7, 68–72 (1953).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Nowell, P.C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Fearon, E.R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Tsao, J.L. et al. Genetic reconstruction of individual colorectal tumor histories. Proc. Natl. Acad. Sci. USA 97, 1236–1241 (2000).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Tomasetti, C., Vogelstein, B. & Parmigiani, G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. USA 110, 1999–2004 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Hu, Z., Sun, R. & Curtis, C. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbcan.2017.03.001 (2017).

  9. 9

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Fischer, A., Vázquez-García, I., Illingworth, C.J. & Mustonen, V. High-definition reconstruction of clonal composition in cancer. Cell Reports 7, 1740–1752 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Miller, C.A. et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLOS Comput. Biol. 10, e1003665 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14

    Deshwar, A.G. et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Uchi, R. et al. Integrated multiregional analysis proposing a new model of colorectal cancer evolution. PLoS Genet. 12, e1005778 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17

    Sievers, C.K. et al. Subclonal diversity arises early even in small colorectal tumours and contributes to differential growth fates. Gut http://dx.doi.org/10.1136/gutjnl-2016-312232 (2016).

  18. 18

    Bozic, I., Gerold, J.M. & Nowak, M.A. Quantifying clonal and subclonal passenger mutations in cancer evolution. PLOS Comput. Biol. 12, e1004731 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19

    Suzuki, Y. et al. Multiregion ultra-deep sequencing reveals early intermixing and variable levels of intratumoral heterogeneity in colorectal cancer. Mol. Oncol. 11, 124–139 (2017).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Ling, S. et al. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc. Natl. Acad. Sci. USA 112, E6496–E6505 (2015).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Williams, M.J., Werner, B., Barnes, C.P., Graham, T.A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Bustamante, C.D., Wakeley, J., Sawyer, S. & Hartl, D.L. Directional selection and the site-frequency spectrum. Genetics 159, 1779–1788 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Ray, N., Currat, M. & Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76–86 (2003).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Siegmund, K. & Shibata, D. At least two well-spaced samples are needed to genotype a solid tumor. BMC Cancer 16, 250 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25

    Holsinger, K.E. & Weir, B.S. Genetics in geographically structured populations: defining, estimating and interpreting FST . Nat. Rev. Genet. 10, 639–650 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Durrett, R. Population genetics of neutral mutations in exponentially growing cancer cell populations. Ann. Appl. Probab. 23, 230–250 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Kimura, M. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci. USA 76, 3440–3444 (1979).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Ohta, T. & Gillespie, J.H. Development of neutral and nearly neutral theories. Theor. Popul. Biol. 49, 128–142 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Rowan, A. et al. Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin. Gastroenterol. Hepatol. 3, 1115–1123 (2005).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Qiao, Y. et al. SubcloneSeeker: a computational framework for reconstructing tumor clone structure for cancer variant interpretation and prioritization. Genome Biol. 15, 443 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Li, B. & Li, J.Z. A general framework for analyzing tumor subclonality using SNP array and DNA sequencing data. Genome Biol. 15, 473 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32

    Popic, V. et al. Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16, 91 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33

    Ross-Innes, C.S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Zhang, J. et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346, 256–259 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    de Bruin, E.C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Johnson, B.E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Kim, H. et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 25, 316–327 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Grossman, S.R. et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327, 883–886 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Ostrow, S.L., Barshir, R., DeGregori, J., Yeger-Lotem, E. & Hershberg, R. Cancer evolution is associated with pervasive positive selection on globally expressed genes. PLoS Genet. 10, e1004239 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41

    Wu, C.-I., Wang, H.-Y., Ling, S. & Lu, X. The ecology and evolution of cancer: the ultra-microevolutionary process. Annu. Rev. Genet. 50, 347–369 (2016).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Messer, P.W. & Petrov, D.A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28, 659–669 (2013).

    PubMed  Article  Google Scholar 

  43. 43

    Lloyd, M.C. et al. Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res. 76, 3136–3144 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    McFarland, C.D., Korolev, K.S., Kryukov, G.V., Sunyaev, S.R. & Mirny, L.A. Impact of deleterious passenger mutations on cancer progression. Proc. Natl. Acad. Sci. USA 110, 2910–2915 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Cleary, A.S., Leonard, T.L., Gestl, S.A. & Gunther, E.J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508, 113–117 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Ha, G. et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 24, 1881–1893 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261–264 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Diaz, L.A. Jr. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. USA 107, 18545–18550 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Visvader, J.E. & Lindeman, G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Wand, M.P. Data-based choice of histogram bin width. Am. Stat. 51, 59 (1997).

    Google Scholar 

  54. 54

    Bhatia, G., Patterson, N., Sankararaman, S. & Price, A.L. Estimating and interpreting FST: the impact of rare variants. Genome Res. 23, 1514–1521 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by awards from the NIH (R01CA182514), the Susan G. Komen Foundation (IIR13260750), and the Breast Cancer Research Foundation (BCRF-16-032) to C.C. and an award from the NIH (R01CA185016) to D.S. Z.H. is supported by an Innovative Genomics Initiative (IGI) Postdoctoral Fellowship. A.S. is supported by the Chris Rokos Fellowship. T.A.G. was supported by Cancer Research UK. This work was supported in part by NIH P30 CA124435 using the Genetics Bioinformatics Service Center within the Stanford Cancer Institute Shared Resource. The results are in part based upon data generated from the following studies: EGAD00001001394, EGAD00001000714, EGAD00001000900, EGAD00001000984, and EGAD00001001113. We thank members of the Curtis laboratory for helpful discussions.

Author information

Affiliations

Authors

Contributions

R.S., Z.H., and C.C. designed the study. R.S. analyzed and visualized the data and performed statistical analyses. Z.H. performed simulation studies. Z.M. and D.S. generated data. R.S., Z.H., and C.C. interpreted the data. A.S. and T.A.G. contributed to earlier analysis of the COAD data set. A.H. provided statistical advice. J.M.F. performed xenograft experiments. D.S. and C.C. provided reagents and data. C.C. supervised the study and wrote the manuscript with input from R.S. and Z.H. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christina Curtis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–36, Supplementary Tables 1–3 and Supplementary Note. (PDF 20850 kb)

Supplementary Table 4

SFS-derived ITH metrics for virtual tumors. (XLSX 303 kb)

Supplementary Table 5

SFS-derived ITH metrics and SVM-based classification of patient samples. (XLSX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Hu, Z., Sottoriva, A. et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat Genet 49, 1015–1024 (2017). https://doi.org/10.1038/ng.3891

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing