Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci

Abstract

Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trait associations of the HBS1L-MYB intergenic region.
Figure 2: DNA Striker algorithm.
Figure 3: Pooled saturating-mutagenesis screening of the HBS1L-MYB region by using NGG- and NGA Cas9s and variants from 1000 Genomes haplotypes.
Figure 4: Mapping NGG- and NGA-restricted sgRNA dropout scores to genomic cleavage position identifies putative functional elements.
Figure 5: Trait-associated SNPs mark essential enhancer elements.
Figure 6: The HBS1L-MYB intergenic region contains highly repetitive genomic sequences.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bauer, D.E. et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342, 253–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Canver, M.C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Canver, M.C. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289, 21312–21324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Corradin, O. et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 24, 1–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ran, F.A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uda, M. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. USA 105, 1620–1625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lettre, G. et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. USA 105, 11869–11874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thein, S.L. et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc. Natl. Acad. Sci. USA 104, 11346–11351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galarneau, G. et al. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat. Genet. 42, 1049–1051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farrell, J.J. et al. A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood 117, 4935–4945 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stadhouders, R. et al. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J. Clin. Invest. 124, 1699–1710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mtatiro, S.N. et al. Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania. PLoS One 9, e111464 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bae, H.T. et al. Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood 120, 1961–1962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ganesh, S.K. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat. Genet. 41, 1191–1198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soranzo, N. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat. Genet. 41, 1182–1190 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 42, 210–215 (2010).

    CAS  PubMed  Google Scholar 

  21. Menzel, S., Garner, C., Rooks, H., Spector, T.D. & Thein, S.L. HbA2 levels in normal adults are influenced by two distinct genetic mechanisms. Br. J. Haematol. 160, 101–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. van der Harst, P. et al. Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Z. et al. Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network. Hum. Mol. Genet. 22, 2529–2538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Esvelt, K.M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mali, P., Esvelt, K.M. & Church, G.M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleinstiver, B.P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doench, J.G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurita, R. et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 8, e59890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Canver, M.C. & Orkin, S.H. Customizing the genome as therapy for the β-hemoglobinopathies. Blood 127, 2536–2545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sankaran, V.G. et al. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. USA 108, 1519–1524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rajagopal, N. et al. High-throughput mapping of regulatory DNA. Nat. Biotechnol. 34, 167–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munoz, D.M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Aguirre, A.J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR-Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, L. et al. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat. Commun. 5, 5507 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  43. Shalem, O., Sanjana, N.E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  47. Pinello, L., Xu, J., Orkin, S.H. & Yuan, G.-C.Analysisof chromatin-state plasticity identifies cell-type-specific regulators of H3K27me3 patterns. Proc. Natl. Acad. Sci. USA 111, E344–E353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grant, C.E., Bailey, T.L. & Noble, W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathelier, A. et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Solovieff, N. et al. Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood 115, 1815–1822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giarratana, M.C. et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 118, 5071–5079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Herbert, M. Berkeley, and M. Vangala (Dana-Farber Cancer Institute Molecular Biology Core Facility) for sequencing, F. Lu at the HHMI Sequencing facility, and members at the Hematologic Neoplasia Flow Cytometry and the Flow Cytometry Core facilities at the Dana-Farber Cancer Institute for cell-sorting. We also thank J. Doench, M. Haeussler, J.-P. Concordet, R. Barretto, V. Sankaran, and J. Xu for helpful discussions. M.C.C. is supported by a National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) award (F30DK103359-01A1). L.P. is supported by a National Human Genome Research Institute (NHGRI) Career Development Award (K99HG008399). S.L. is funded by a Canadian Institutes of Health Research Banting Doctoral Scholarship. E.N.S. is supported by a Hematology Opportunities for the Next Generation of Research Scientists (HONORS) Award from the American Society of Hematology. G.C.Y. is supported by awards from the National Heart, Lung, and Blood Institute (NHLBI) (R01HL119099). G.L. is funded by the Canada Research Program, the Montreal Heart Institute Foundation, and the Canadian Institute of Health Research (MOP123382). A portion of the DNA genotyping was performed as part of the Biogen Sickle Cell Disease Consortium. D.E.B. is supported by NIDDK (K08DK093705, R03DK109232), NHLBI (DP2OD022716), the Burroughs Wellcome Fund, a Doris Duke Charitable Foundation Innovations in Clinical Research Award, an ASH Scholar Award, a Charles H. Hood Foundation Child Health Research Award, and a Cooley's Anemia Foundation Fellowship. S.H.O. is supported by an award from the NHLBI (P01HL032262) and an award from the NIDDK (P30DK049216, Center of Excellence in Molecular Hematology).

Author information

Authors and Affiliations

Authors

Contributions

M.C.C., D.E.B., and S.H.O. conceived this study. M.C.C. developed the DNA Striker computational tool and performed computational analysis of degrees of PAM saturation. M.C.C., Y.W., E.N.S., A.J.N., D.D.C., P.P.D., M.A.C., and J.Z. performed the experiments. S.L., Y.I., F.G., C.B., A.K., C.M., M.R., and G.L. performed the genotyping and genetic analysis. R.K. and Y.N. provided the HUDEP-2 cell line. M.C.C., S.L., Y.I., L.P., G.-C.Y., and G.L. performed computational and statistical analysis. D.E.B. and S.H.O. supervised this work. M.C.C., D.E.B., and S.H.O. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Daniel E Bauer or Stuart H Orkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23 (PDF 23705 kb)

Supplementary Table 1

HbF-associated SNPs. Genome-wide significant SNPs from HbF meta-analysis. (XLSX 10 kb)

Supplementary Table 2

Previously published red blood cell trait associated SNPs22. (XLSX 29 kb)

Supplementary Table 3

Conditional analysis of HbF-associated SNPs. (XLSX 8 kb)

Supplementary Table 4

Genomic cleavage distribution for 8 PAM sequences by chromosome. (XLSX 11 kb)

Supplementary Table 5

Genomic cleavage distribution. Distances between adjacent genomic cleavages for 8 PAM sequences in (a) DHS, (b) enhancers, and (c) repressed regions for 9 ENCODE cell lines as well as (d) RefSeq gene annotations. (XLSX 13 kb)

Supplementary Table 6

NGG-restricted sgRNA library. (XLSX 392 kb)

Supplementary Table 7

NGA-restricted sgRNA library. (XLSX 546 kb)

Supplementary Table 8

sgRNA for Cas9 activity reporters. (XLSX 8 kb)

Supplementary Table 9

MYB shRNA sequences. (XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canver, M., Lessard, S., Pinello, L. et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nat Genet 49, 625–634 (2017). https://doi.org/10.1038/ng.3793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing