Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (6 alleles) (95% confidence interval) = 1.24 (1.20–1.27), P = 5.05 × 10−49), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Manhattan plots.
Figure 2: Genetic risk score associations with COPD susceptibility.

References

  1. 1

    Fletcher, C. & Peto, R. The natural history of chronic airflow obstruction. BMJ 1, 1645–1648 (1977).

    Article  CAS  Google Scholar 

  2. 2

    Lange, P., Celli, B. & Agustí, A. Lung-function trajectories and chronic obstructive pulmonary disease. N. Engl. J. Med. 373, 1575 (2015).

    Article  CAS  Google Scholar 

  3. 3

    Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    Article  Google Scholar 

  4. 4

    Salvi, S.S. & Barnes, P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 374, 733–743 (2009).

    Article  Google Scholar 

  5. 5

    Melén, E. Bridging genetics, epidemiology, and respiratory medicine. Am. J. Respir. Crit. Care Med. 190, 716–718 (2014).

    Article  Google Scholar 

  6. 6

    Svanes, C. et al. Early life origins of chronic obstructive pulmonary disease. Thorax 65, 14–20 (2010).

    Article  CAS  Google Scholar 

  7. 7

    Celli, B.R. et al. An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. Eur. Respir. J. 45, 879–905 (2015).

    Article  Google Scholar 

  8. 8

    Pillai, S.G. et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5, e1000421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Cho, M.H. et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 42, 200–202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Cho, M.H. et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir. Med. 2, 214–225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Hancock, D.B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

    Article  CAS  Google Scholar 

  12. 12

    Loth, D.W. et al. Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat. Genet. 46, 669–677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Soler Artigas, M. et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 43, 1082–1090 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Soler Artigas, M. et al. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat. Commun. 6, 8658 (2015).

    Article  CAS  Google Scholar 

  16. 16

    Wain, L.V. et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir. Med. 3, 769–781 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Nelson, M.R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  Google Scholar 

  18. 18

    Sanseau, P. et al. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30, 317–320 (2012).

    Article  CAS  Google Scholar 

  19. 19

    Palmer, L.J. et al. Familial aggregation and heritability of adult lung function: results from the Busselton Health Study. Eur. Respir. J. 17, 696–702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Wilk, J.B. et al. Evidence for major genes influencing pulmonary function in the NHLBI family heart study. Genet. Epidemiol. 19, 81–94 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Weiss, S.T. Lung function and airway diseases. Nat. Genet. 42, 14–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hao, K. et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet. 8, e1003029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Lamontagne, M. et al. Refining susceptibility loci of chronic obstructive pulmonary disease with lung eqtls. PLoS One 8, e70220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Obeidat, M. et al. GSTCD and INTS12 regulation and expression in the human lung. PLoS One 8, e74630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Regan, E.A. et al. Genetic epidemiology of COPD (COPDGene) study design. COPD 7, 32–43 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Vestbo, J. et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur. Respir. J. 31, 869–873 (2008).

    Article  CAS  Google Scholar 

  28. 28

    Fishman, A. et al. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N. Engl. J. Med. 348, 2059–2073 (2003).

    Article  Google Scholar 

  29. 29

    Bell, B., Rose, C.L. & Damon, H. The Normative Aging Study: an interdisciplinary and longitudinal study of health and aging. Aging Hum. Dev. 3, 5–17 (1972).

    Article  Google Scholar 

  30. 30

    Dewey, F.E. et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N. Engl. J. Med. 374, 1123–1133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    Article  CAS  Google Scholar 

  32. 32

    Wilk, J.B. et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am. J. Respir. Crit. Care Med. 186, 622–632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Jiang, Z. et al. A chronic obstructive pulmonary disease susceptibility gene, FAM13A, regulates protein stability of β-catenin. Am. J. Respir. Crit. Care Med. 194, 185–197 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Obeidat, M. et al. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet Respir. Med. 3, 782–795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Carter, R.I., Ungurs, M.J., Mumford, R.A. & Stockley, R.A. Aα-Val360: a marker of neutrophil elastase and COPD disease activity. Eur. Respir. J. 41, 31–38 (2013).

    Article  CAS  Google Scholar 

  36. 36

    Sand, J.M. et al. Accelerated extracellular matrix turnover during exacerbations of COPD. Respir. Res. 16, 69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Jhingran, A. et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 11, e1004589 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  39. 39

    Cogan, J.D. et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am. J. Respir. Crit. Care Med. 191, 646–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Todd, J.A., Bell, J.I. & McDevitt, H.O. HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329, 599–604 (1987).

    Article  CAS  Google Scholar 

  41. 41

    Hobbs, B.D. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. http://dx.doi.org/10.0138/ng.3752 (2017).

  42. 42

    Soler Artigas, M. et al. Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function. Am. J. Respir. Crit. Care Med. 184, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Poole, C. A history of the population attributable fraction and related measures. Ann. Epidemiol. 25, 147–154 (2015).

    Article  Google Scholar 

  44. 44

    Fadista, J., Manning, A.K., Florez, J.C. & Groop, L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202–1205 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Miller, M.R. et al. Standardisation of spirometry. Eur. Respir. J. 26, 319–338 (2005).

    Article  CAS  Google Scholar 

  46. 46

    Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat. Commun. 6, 8111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Article  CAS  Google Scholar 

  49. 49

    Wilk, J.B. et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 5, e1000429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Dastani, Z. et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 8, e1002607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    van de Bunt, M., Cortes, A., Brown, M.A., Morris, A.P. & McCarthy, M.I. Evaluating the performance of fine-mapping strategies at common variant GWAS loci. PLoS Genet. 11, e1005535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, e64683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP–trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Eicher, J.D. et al. GRASP v2.0: an update on the Genome-Wide Repository of Associations between SNPs and phenotypes. Nucleic Acids Res. 43, D799–D804 (2015).

    Article  CAS  Google Scholar 

  57. 57

    Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).

    Article  Google Scholar 

  58. 58

    Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  60. 60

    Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).

    Article  CAS  Google Scholar 

  61. 61

    Segrè, A.V., Groop, L., Mootha, V.K., Daly, M.J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Trynka, G. et al. Disentangling the Effects of Colocalizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci. Am. J. Hum. Genet. 97, 139–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by a Medical Research Council (MRC) strategic award to M.D.T., I.P.H., D.S. and L.V.W. (MC_PC_12010). This research has been conducted using the UK Biobank Resource under application 648. This article presents independent research funded partially by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the UK Department of Health. This research used the ALICE and SPECTRE High-Performance Computing Facilities at the University of Leicester. Additional acknowledgments and funding details can be found in the Supplementary Note.

Author information

Affiliations

Authors

Consortia

Contributions

L.V.W., D.J.P., M.-R.J., A.L.J., N.J.W., J.F.W., B.S., H.S., N.M.P.-H., S.K., C.G., I.J.D., I. Rudan, S.M.K., O.P., M.K., C.H., T.L., O.T.R., A.J.H., C.E.P., P.D.S., A.G., P.S.B., J.D.C., T.H.B., N.N.H., R.A.M., I. Ruczinski, K.C.B., Y.B., P.J., P.D.P., D.D.S., K.H., E.P.B., R.J.F.L., R.G.W., Z.C., I.Y.M., L.L., E.Z., I. Sayers, D.P.S., I.P.H., U.G. and M.D.T. contributed to the conception and study design. L.V.W., N.S., M.S., A.M.E., B.N., L.B.-C., M.O., A.P.H., M.A.P., R.J.H., C.K.B., T.L.R., A.G.F., C.J., T.B., V.E.J., R.J.A., B.P.P., A.C., M.W., J.H., J.Z., P.K.J., B.S., R.R., M.I., N.M.P.-H., S.E.H., J.M., S.E., I. Surakka, V.V., C.H., T.L., D.M.E., C.A.W., E.S.W., R.B., B.D.H., A.A.L., D.W.S., M.v.d.B., C.-A.B., D.C.N., O.G., F.E.D., S.E.B., D.J.C., H.L.K., S.J., G. Thorleifsson, I.J., T.G., K.S., C.S., G.N., R.G.W., J.V., O.P.K., M.H.C., E.K.S., G. Trynka, J.H.Z. and D.P.S. contributed to data analysis. L.V.W., N.S., M.S., A.M.E., B.N., M.O., A.P.H., M.A.P., R.J.H., C.K.B., T.L.R., A.G.F., C.J., V.E.J., A.C., M.-R.J., B.S., R.R., H.S., M.I., N.M.P.-H., S.K., C.G., C.H., A.G., C.S., G.N., R.J.F.L., A.L.H., C.B., I. Sayers, A.P.M., D.P.S., I.P.H. and M.D.T. contributed to data interpretation.

Corresponding authors

Correspondence to Louise V Wain or Ian P Hall or Martin D Tobin.

Ethics declarations

Competing interests

F.E.D. and S.E.B. are employed by Regeneron Pharmaceuticals. D.C.N. is employed by Merck. In the past three years, E.K.S. received honoraria and consulting fees from Merck, grant support and consulting fees from GlaxoSmithKline, and honoraria and travel support from Novartis. S.J., G. Thorleifsson, I.J. and K.S. are employed by deCODE Genetics/Amgen. M.H.C. receives grant funding from GlaxoSmithKline.

Additional information

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1, 2, 5–9, 11 and 13–21, and Supplementary Note (PDF 8709 kb)

Supplementary Tables 3, 4, 10 and 12

Supplementary Tables 3, 4, 10 and 12 (XLSX 95 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wain, L., Shrine, N., Artigas, M. et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet 49, 416–425 (2017). https://doi.org/10.1038/ng.3787

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing