Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet's disease susceptibility

Abstract

We analyzed 1,900 Turkish Behçet's disease cases and 1,779 controls genotyped with the Immunochip. The most significantly associated SNP was rs1050502, a tag SNP for HLA-B*51. In the Turkish discovery set, we identified three new risk loci, IL1AIL1B, IRF8, and CEBPBPTPN1, with genome-wide significance (P < 5 × 10−8) by direct genotyping and ADOEGR2 by imputation. We replicated the ADOEGR2, IRF8, and CEBPBPTPN1 loci by genotyping 969 Iranian cases and 826 controls. Imputed data in 608 Japanese cases and 737 controls further replicated ADOEGR2 and IRF8, and meta-analysis additionally identified RIPK2 and LACC1. The disease-associated allele of rs4402765, the lead marker at IL1AIL1B, was associated with both decreased IL-1α and increased IL-1β production. ABO non-secretor genotypes for two ancestry-specific FUT2 SNPs showed strong disease association (P = 5.89 × 10−15). Our findings extend the list of susceptibility genes shared with Crohn's disease and leprosy and implicate mucosal factors and the innate immune response to microbial exposure in Behçet's disease susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of Immunochip markers with Behçet's disease in 1,900 cases and 1,779 controls from Turkey.
Figure 2: Expression analysis according to genotype at rs4402765, the lead SNP in the IL1AIL1B locus.

Similar content being viewed by others

References

  1. Sakane, T., Takeno, M., Suzuki, N. & Inaba, G. Behçet's disease. N. Engl. J. Med. 341, 1284–1291 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hatemi, G. et al. EULAR recommendations for the management of Behçet disease. Ann. Rheum. Dis. 67, 1656–1662 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Verity, D.H., Marr, J.E., Ohno, S., Wallace, G.R. & Stanford, M.R. Behçet's disease, the Silk Road and HLA-B51: historical and geographical perspectives. Tissue Antigens 54, 213–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Gul, A. & Ohno, S. HLA-B*51 and Behçet disease. Ocul. Immunol. Inflamm. 20, 37–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Ono, S., Aoki, K., Sugiura, S., Nakayama, E. & Itakura, K. HL-A5 and Behçet's disease. Lancet 2, 1383–1384 (1973).

    Article  Google Scholar 

  6. de Menthon, M., Lavalley, M.P., Maldini, C., Guillevin, L. & Mahr, A. HLA-B51/B5 and the risk of Behçet's disease: a systematic review and meta-analysis of case–control genetic association studies. Arthritis Rheum. 61, 1287–1296 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Remmers, E.F. et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23RIL12RB2 regions associated with Behçet's disease. Nat. Genet. 42, 698–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mizuki, N. et al. Genome-wide association studies identify IL23RIL12RB2 and IL10 as Behçet's disease susceptibility loci. Nat. Genet. 42, 703–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Kirino, Y. et al. Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet. 45, 202–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, H. et al. TNFAIP3 gene polymorphisms confer risk for Behçet's disease in a Chinese Han population. Hum. Genet. 132, 293–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Kirino, Y. et al. Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behçet disease. Proc. Natl. Acad. Sci. USA 110, 8134–8139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xavier, J.M. et al. FUT2: filling the gap between genes and environment in Behçet's disease? Ann. Rheum. Dis. 74, 618–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Kappen, J.H. et al. Genome-wide association study in an admixed case series reveals IL12A as a new candidate in Behçet disease. PLoS One 10, e0119085 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ortiz-Fernández, L. et al. Genetic analysis with the Immunochip platform in Behçet disease. Identification of residues associated in the HLA class I region and new susceptibility loci. PLoS One 11, e0161305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cortes, A. & Brown, M.A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Ombrello, M.J. et al. Behçet disease–associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA 111, 8867–8872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes, T. et al. Identification of multiple independent susceptibility loci in the HLA region in Behçet's disease. Nat. Genet. 45, 319–324 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Barland, C.O. et al. Imiquimod-induced interleukin-1α stimulation improves barrier homeostasis in aged murine epidermis. J. Invest. Dermatol. 122, 330–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Vonk, A.G. et al. Endogenous interleukin (IL)-1α and IL-1β are crucial for host defense against disseminated candidiasis. J. Infect. Dis. 193, 1419–1426 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Liang, L. et al. IL-1β triggered by peptidoglycan and lipopolysaccharide through TLR2/4 and ROS–NLRP3 inflammasome–dependent pathways is involved in ocular Behçet's disease. Invest. Ophthalmol. Vis. Sci. 54, 402–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, E.H., Park, M.J., Park, S. & Lee, E.S. Increased expression of the NLRP3 inflammasome components in patients with Behçet's disease. J. Inflamm. (Lond.) 12, 41 (2015).

    Article  Google Scholar 

  22. Caso, F. et al. Biological treatments in Behçet's disease: beyond anti-TNF therapy. Mediators Inflamm. 2014, 107421 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gül, A. et al. Interleukin-1β-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behçet's disease: an open-label pilot study. Ann. Rheum. Dis. 71, 563–566 (2012).

    Article  PubMed  Google Scholar 

  24. Ferrer-Admetlla, A. et al. A natural history of FUT2 polymorphism in humans. Mol. Biol. Evol. 26, 1993–2003 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu, D.Y. et al. Associations of FUT2 and FUT3 gene polymorphisms with Crohn's disease in Chinese patients. J. Gastroenterol. Hepatol. 29, 1778–1785 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Wacklin, P. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6, e20113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl. Acad. Sci. USA 108, 19030–19035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheinfeld, J., Schaeffer, A.J., Cordon-Cardo, C., Rogatko, A. & Fair, W.R. Association of the Lewis blood-group phenotype with recurrent urinary tract infections in women. N. Engl. J. Med. 320, 773–777 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Marionneau, S., Airaud, F., Bovin, N.V., Le Pendu, J. & Ruvoën-Clouet, N. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J. Infect. Dis. 192, 1071–1077 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Rupp, C. et al. Fut2 genotype is a risk factor for dominant stenosis and biliary candida infections in primary sclerosing cholangitis. Aliment. Pharmacol. Ther. 39, 873–882 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Hatemi, I. et al. Frequency of pathergy phenomenon and other features of Behçet's syndrome among patients with inflammatory bowel disease. Clin. Exp. Rheumatol. 26 (Suppl. 50), S91–S95 (2008).

    CAS  PubMed  Google Scholar 

  33. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, F.R. et al. Genomewide association study of leprosy. N. Engl. J. Med. 361, 2609–2618 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, H. et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat. Genet. 47, 267–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Sales-Marques, C. et al. NOD2 and CCDC122LACC1 genes are associated with leprosy susceptibility in Brazilians. Hum. Genet. 133, 1525–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Wakil, S.M. et al. Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 67, 288–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Patel, N. et al. Study of Mendelian forms of Crohn's disease in Saudi Arabia reveals novel risk loci and alleles. Gut 63, 1831–1832 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Cader, M.Z. et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat. Immunol. 17, 1046–1056 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Screpanti, I. et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBPβ-deficient mice. EMBO J. 14, 1932–1941 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Zierhut, M. et al. Immunology and functional genomics of Behçet's disease. Cell. Mol. Life Sci. 60, 1903–1922 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Criteria for diagnosis of Behçet's disease. International Study Group for Behçet's Disease. Lancet 335, 1078–1080 (1990).

  44. Mizushima, Y. Recent research into Behçet's disease in Japan. Int. J. Tissue React. 10, 59–65 (1988).

    CAS  PubMed  Google Scholar 

  45. Price, A.L. et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 author reply 135–139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Purcell, S., Cherny, S.S. & Sham, P.C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, e64683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    CAS  PubMed  Google Scholar 

  49. Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

    Article  PubMed  Google Scholar 

  50. Skol, A.D., Scott, L.J., Abecasis, G.R. & Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 38, 209–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    PubMed  Google Scholar 

  52. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, T.P. et al. Genevar: a database and Java application for the analysis and visualization of SNP–gene associations in eQTL studies. Bioinformatics 26, 2474–2476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baran, Y. et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 25, 927–936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dennis, G. Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Programs of the National Human Genome Research Institute and the National Institute of Arthritis and Musculoskeletal and Skin Diseases. We thank all the patients, the healthy controls, and medical staff for their enthusiastic support during this research study. M.T. is supported by a Fellowship for Japanese Biomedical and Behavioral Researchers at the NIH from the Japan Society for the Promotion of Science Research and a grant from the Japan Foundation for Applied Enzymology. Y.K. is supported by grants from the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (grant 26713036), the Kanae Foundation for the Promotion of Medical Science, the Takeda Science Foundation, the SENSHIN Medical Research Foundation, and the Yokohama Foundation for Advancement of Medical Science. This research was also supported by the Portuguese Fundação para a Ciência e a Tecnologia (grant CMUP-ERI/TPE/0028/2013, fellowship SFRH/BPD/70008/2010 to I.S., and an Investigator-FCT contract to S.A.O.) and the Research Committee of the Tehran University of Medical Sciences (grant 132/714). We thank A.F. Wilson for insightful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.T., M.J.O., A.G., D.L.K., and E.F.R. designed the study. M.T., A.M., M.J.O., M.B., M.G., A.G., D.L.K., and E.F.R. carried out the analysis. M.T., N.M., A.M., M.J.O., Y.K., C.S., J.L., M.B., B.E., T.K., D.U., I.T.-T., E.S., Y.O., I.S., F.D., V.F., F.S., B.S.A., A.N., N.M.S., F.G., S.O., A.U., Y.I., M.G., S.A.O., A.G., D.L.K., and E.F.R. procured samples and generated data. M.T., M.J.O., M.B., M.G., A.G., D.L.K., and E.F.R. wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Daniel L Kastner or Elaine F Remmers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–21 (PDF 2510 kb)

Supplementary Data Set

Immunochip statistical summary data set (TXT 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, M., Mizuki, N., Meguro, A. et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet's disease susceptibility. Nat Genet 49, 438–443 (2017). https://doi.org/10.1038/ng.3786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing