Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Divergent effects of intrinsically active MEK variants on developmental Ras signaling

Abstract

Germline mutations in Ras pathway components are associated with a large class of human developmental abnormalities, known as RASopathies, that are characterized by a range of structural and functional phenotypes, including cardiac defects and neurocognitive delays1,2. Although it is generally believed that RASopathies are caused by altered levels of pathway activation, the signaling changes in developing tissues remain largely unknown3,4. We used assays with spatiotemporal resolution in Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish) to quantify signaling changes caused by mutations in MAP2K1 (encoding MEK), a core component of the Ras pathway that is mutated in both RASopathies and cancers in humans5,6. Surprisingly, we discovered that intrinsically active MEK variants can both increase and reduce the levels of pathway activation in vivo. The sign of the effect depends on cellular context, implying that some of the emerging phenotypes in RASopathies may be caused by increased, as well as attenuated, levels of Ras signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MEK variants are constitutively active in vitro.
Figure 2: MEK variants cause divergent effects on ERK activation in vivo.
Figure 3: Opposing effects of activating MEK mutations on ERK-dependent morphological phenotypes.
Figure 4: A two-input mathematical model for feedback-induced effects on ERK signaling.
Figure 5: A feedback-based mathematical model.
Figure 6: MEK variants cause divergent effects on ERK signaling in zebrafish.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rauen, K.A. The RASopathies. Annu. Rev. Genomics Hum. Genet. 14, 355–369 (2013).

    Article  CAS  Google Scholar 

  2. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001).

    Article  CAS  Google Scholar 

  3. Chen, X. et al. Endogenous expression of HrasG12V induces developmental defects and neoplasms with copy number imbalances of the oncogene. Proc. Natl. Acad. Sci. USA 106, 7979–7984 (2009).

    Article  CAS  Google Scholar 

  4. Jindal, G.A., Goyal, Y., Burdine, R.D., Rauen, K.A. & Shvartsman, S.Y. RASopathies: unraveling mechanisms with animal models. Dis. Model. Mech. 8, 769–782 (2015).

    Article  Google Scholar 

  5. Rodriguez-Viciana, P. et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311, 1287–1290 (2006).

    Article  CAS  Google Scholar 

  6. Nikolaev, S.I. et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat. Genet. 44, 133–139 (2011).

    Article  Google Scholar 

  7. Seger, R. et al. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor–stimulated A431 cells. J. Biol. Chem. 267, 14373–14381 (1992).

    CAS  PubMed  Google Scholar 

  8. Gabay, L., Seger, R. & Shilo, B.Z. MAP kinase in situ activation atlas during Drosophila embryogenesis. Development 124, 3535–3541 (1997).

    CAS  PubMed  Google Scholar 

  9. Casanova, J. & Struhl, G. Localized surface activity of torso, a receptor tyrosine kinase, specifies terminal body pattern in Drosophila. Genes Dev. 3, 12B, 2025–2038 (1989).

    Article  Google Scholar 

  10. Furriols, M. & Casanova, J. In and out of Torso RTK signalling. EMBO J. 22, 1947–1952 (2003).

    Article  CAS  Google Scholar 

  11. Strecker, T.R., Halsell, S.R., Fisher, W.W. & Lipshitz, H.D. Reciprocal effects of hyper- and hypoactivity mutations in the Drosophila pattern gene torso. Science 243, 1062–1066 (1989).

    Article  CAS  Google Scholar 

  12. de las Heras, J.M. & Casanova, J. Spatially distinct downregulation of Capicua repression and tailless activation by the Torso RTK pathway in the Drosophila embryo. Mech. Dev. 123, 481–486 (2006).

    Article  CAS  Google Scholar 

  13. Klingler, M., Erdélyi, M., Szabad, J. & Nüsslein-Volhard, C. Function of torso in determining the terminal anlagen of the Drosophila embryo. Nature 335, 275–277 (1988).

    Article  CAS  Google Scholar 

  14. Schupbach, T. & Wieschaus, E. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev. Biol. 113, 443–448 (1986).

    Article  CAS  Google Scholar 

  15. Degelmann, A., Hardy, P.A., Perrimon, N. & Mahowald, A.P. Developmental analysis of the torso-like phenotype in Drosophila produced by a maternal-effect locus. Dev. Biol. 115, 479–489 (1986).

    Article  CAS  Google Scholar 

  16. de Las Heras, J.M., Martinho, R.G., Lehmann, R. & Casanova, J. A functional antagonism between the pgc germline repressor and torso in the development of somatic cells. EMBO Rep. 10, 1059–1065 (2009).

    Article  CAS  Google Scholar 

  17. Perrimon, N., Engstrom, L. & Mahowald, A.P. A pupal lethal mutation with a paternally influenced maternal effect on embryonic development in Drosophila melanogaster. Dev. Biol. 110, 480–491 (1985).

    Article  CAS  Google Scholar 

  18. Sturm, O.E. et al. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci. Signal. 3, ra90 (2010).

    Article  CAS  Google Scholar 

  19. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503–512 (2007).

    Article  CAS  Google Scholar 

  20. Rewitz, K.F., Yamanaka, N., Gilbert, L.I. & O'Connor, M.B. The insect neuropeptide PTTH activates receptor tyrosine kinase Torso to initiate metamorphosis. Science 326, 1403–1405 (2009).

    Article  CAS  Google Scholar 

  21. Snyder-Warwick, A.K. et al. Analysis of a gain-of-function FGFR2 Crouzon mutation provides evidence of loss of function activity in the etiology of cleft palate. Proc. Natl. Acad. Sci. USA 107, 2515–2520 (2010).

    Article  CAS  Google Scholar 

  22. Xing, L. et al. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. eLife 5, e11123 (2016).

    Article  Google Scholar 

  23. Krens, S.F.G. et al. Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Dev. Biol. 319, 370–383 (2008).

    Article  CAS  Google Scholar 

  24. Neugebauer, J.M., Amack, J.D., Peterson, A.G., Bisgrove, B.W. & Yost, H.J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651–654 (2009).

    Article  CAS  Google Scholar 

  25. Bonetti, M. et al. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development 141, 1961–1970 (2014).

    Article  CAS  Google Scholar 

  26. Baynam, G. et al. A germline MTOR mutation in Aboriginal Australian siblings with intellectual disability, dysmorphism, macrocephaly, and small thoraces. Am. J. Med. Genet. A. 167, 1659–1667 (2015).

    Article  CAS  Google Scholar 

  27. Gripp, K.W. et al. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am. J. Med. Genet. A. 167A, 271–281 (2015).

    Article  Google Scholar 

  28. Calebiro, D. et al. PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit. Nat. Commun. 5, 5680 (2014).

    Article  CAS  Google Scholar 

  29. Ferguson, S.B., Blundon, M.A., Klovstad, M.S. & Schüpbach, T. Modulation of gurken translation by insulin and TOR signaling in Drosophila. J. Cell Sci. 125, 1407–1419 (2012).

    Article  CAS  Google Scholar 

  30. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  Google Scholar 

  31. Hunter, C. & Wieschaus, E. Regulated expression of nullo is required for the formation of distinct apical and basal adherens junctions in the Drosophila blastoderm. J. Cell Biol. 150, 391–401 (2000).

    Article  CAS  Google Scholar 

  32. Lim, B. et al. Dynamics of inductive ERK signaling in the Drosophila embryo. Curr. Biol. 25, 1784–1790 (2015).

    Article  CAS  Google Scholar 

  33. Coppey, M., Boettiger, A.N., Berezhkovskii, A.M. & Shvartsman, S.Y. Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr. Biol. 18, 915–919 (2008).

    Article  CAS  Google Scholar 

  34. Kim, Y. et al. Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo. Chaos 23, 025105 (2013).

    Article  Google Scholar 

  35. Camps, M. et al. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262–1265 (1998).

    Article  CAS  Google Scholar 

  36. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M.A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998).

    Article  CAS  Google Scholar 

  37. Northwood, I.C., Gonzalez, F.A., Wartmann, M., Raden, D.L. & Davis, R.J. Isolation and characterization of two growth factor–stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. J. Biol. Chem. 266, 15266–15276 (1991).

    CAS  PubMed  Google Scholar 

  38. Zakrzewska, M. et al. ERK-mediated phosphorylation of fibroblast growth factor receptor 1 on Ser 777 inhibits signaling. Sci. Signal. 6, ra11 (2013).

    Article  Google Scholar 

  39. McKay, M.M., Ritt, D.A. & Morrison, D.K. Signaling dynamics of the KSR1 scaffold complex. Proc. Natl. Acad. Sci. USA 106, 11022–11027 (2009).

    Article  CAS  Google Scholar 

  40. Lax, I. et al. The docking protein FRS2α controls a MAP kinase–mediated negative feedback mechanism for signaling by FGF receptors. Mol. Cell 10, 709–719 (2002).

    Article  CAS  Google Scholar 

  41. Langlois, W.J., Sasaoka, T., Saltiel, A.R. & Olefsky, J.M. Negative feedback regulation and desensitization of insulin- and epidermal growth factor–stimulated p21ras activation. J. Biol. Chem. 270, 25320–25323 (1995).

    Article  CAS  Google Scholar 

  42. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  Google Scholar 

  43. Ritt, D.A., Monson, D.M., Specht, S.I. & Morrison, D.K. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol. Cell. Biol. 30, 806–819 (2010).

    Article  CAS  Google Scholar 

  44. Brunet, A., Pagès, G. & Pouysségur, J. Growth factor–stimulated MAP kinase induces rapid retrophosphorylation and inhibition of MAP kinase kinase (MEK1). FEBS Lett. 346, 299–303 (1994).

    Article  CAS  Google Scholar 

  45. Jaffe, K.M., Thiberge, S.Y., Bisher, M.E. & Burdine, R.D. Imaging cilia in zebrafish. Methods Cell Biol. 97, 415–435 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Hasty, P. Johnson, J. London, and LAR staff for zebrafish care; A. Veraksa (University of Massachusetts, Boston), R. Seger (Weizmann Institute), and E. Goldsmith (UT Southwestern) for wild-type MEK and ERK constructs; M. Cardoso for help with the FISH probes; and G. Laevsky and the Molecular Biology Confocal Microscopy Facility, which is a Nikon Center of Excellence, for microscopy support. We thank E. Goldsmith, A. Veraksa, B. Gelb, R. Seger, J. Humphreys, and H. Mattingly for helpful discussions. S.Y.S. and A.S.F. thank J. Link for his input during the initial stages of this project. S.Y.S. and Y.G. thank V. Zini for her input during the initial stages of this project. Y.G., K.Y., E.Y., A.S.F., and S.Y.S. were supported by National Institutes of Health grant R01 GM086537. G.A.J. acknowledges support from an NSF Graduate Research Fellowship under grant DGE 1148900. R.D.B. was supported by National Institutes of Health grants R01 HD048584 and R01GM086537. J.L.P. was supported by National Institutes of Health grant R01 HD048584. T.S. was supported by National Institutes of Health grant R01 GM077620.

Author information

Authors and Affiliations

Authors

Contributions

Y.G., G.A.J., R.D.B., T.S., and S.Y.S. conceived and designed the project. Y.G., E.Y., A.S.F., and G.A.J. performed in vitro experiments; Y.G. and K.Y. performed experiments in Drosophila; Y.G. and S.Y.S. developed the model with inputs from G.A.J.; and G.A.J. and J.L.P. performed experiments in zebrafish. Y.G. and G.A.J. analyzed the results. Y.G., G.A.J., and S.Y.S. wrote the manuscript with input from R.D.B. and T.S.

Corresponding author

Correspondence to Stanislav Y Shvartsman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Table 3 (PDF 3076 kb)

Supplementary Table 1

Quantification of dpERK/MEK and dpERK/ERK for four experimental replicates of the in vitro phosphorylation reactions for a 1:5 MEK:ERK ratio. (XLSX 16 kb)

Supplementary Table 2

Quantification of dpERK/MEK and dpERK/ERK in the in vitro phosphorylation reaction for a 1:10 ratio of MEK:ERK. (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, Y., Jindal, G., Pelliccia, J. et al. Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nat Genet 49, 465–469 (2017). https://doi.org/10.1038/ng.3780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing