Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators

Abstract

After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the chicken W chromosome.
Figure 2: Chicken W-chromosome genes are broadly expressed across adult somatic tissues.
Figure 3: Ancestral Z–W gene pairs from 14 avian species.
Figure 4: Factors in the survival of Z–W gene pairs.
Figure 5: Regulatory annotations of chicken ancestral Z–W gene pairs.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

NCBI Reference Sequence

References

  1. Nanda, I. et al. 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat. Genet. 21, 258–259 (1999).

    CAS  PubMed  Google Scholar 

  2. Ross, M.T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fridolfsson, A.K. et al. Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc. Natl. Acad. Sci. USA 95, 8147–8152 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bellott, D.W. et al. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 466, 612–616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Handley, L.J., Ceplitis, H. & Ellegren, H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 167, 367–376 (2004).

    PubMed  PubMed Central  Google Scholar 

  6. Lahn, B.T. & Page, D.C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, Q. et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Mueller, J.L. et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45, 1083–1087 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Phil. Trans. R. Soc. Lond. B 355, 1563–1572 (2000).

    CAS  Google Scholar 

  10. Bellott, D.W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Soh, Y.Q. et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159, 800–813 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes, J.F. et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483, 82–86 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hughes, J.F. et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463, 536–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, G. et al. Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution. Genome Res. 23, 1486–1495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    CAS  PubMed  Google Scholar 

  16. Moghadam, H.K., Pointer, M.A., Wright, A.E., Berlin, S. & Mank, J.E. W chromosome expression responds to female-specific selection. Proc. Natl. Acad. Sci. USA 109, 8207–8211 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mank, J.E., Hosken, D.J. & Wedell, N. Conflict on the sex chromosomes: cause, effect, and complexity. Cold Spring Harb. Perspect. Biol. 6, a017715 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Wright, A.E., Harrison, P.W., Montgomery, S.H., Pointer, M.A. & Mank, J.E. Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the W chromosome. Evolution 68, 3281–3295 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Ayers, K.L. et al. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol. 14, R26 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Smeds, L. et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6, 7330 (2015).

    CAS  PubMed  Google Scholar 

  21. Yazdi, H.P. & Ellegren, H. Old but not (so) degenerated—slow evolution of largely homomorphic sex chromosomes in ratites. Mol. Biol. Evol. 31, 1444–1453 (2014).

    CAS  PubMed  Google Scholar 

  22. Hori, T., Asakawa, S., Itoh, Y., Shimizu, N. & Mizuno, S. Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol. Biol. Cell 11, 3645–3660 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alföldi, J. et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477, 587–591 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. St John, J.A. et al. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol. 13, 415 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Green, R.E. et al. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346, 1254449 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Zhang, J., Li, C., Zhou, Q. & Zhang, G. Improving the ostrich genome assembly using optical mapping data. Gigascience 4, 24 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Vicoso, B., Kaiser, V.B. & Bachtrog, D. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc. Natl. Acad. Sci. USA 110, 6453–6458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, S. et al. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol. 15, 557 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Lahn, B.T. & Page, D.C. Functional coherence of the human Y chromosome. Science 278, 675–680 (1997).

    CAS  PubMed  Google Scholar 

  30. Kaiser, V.B., Zhou, Q. & Bachtrog, D. Nonrandom gene loss from the Drosophila miranda neo-Y chromosome. Genome Biol. Evol. 3, 1329–1337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. White, M.A., Kitano, J. & Peichel, C.L. Purifying selection maintains dosage-sensitive genes during degeneration of the threespine stickleback Y chromosome. Mol. Biol. Evol. 32, 1981–1995 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, N., Lee, I., Marcotte, E.M. & Hurles, M.E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Merkin, J., Russell, C., Chen, P. & Burge, C.B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan, L. et al. Single-cell RNA–Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

    CAS  PubMed  Google Scholar 

  35. Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43, D662–D669 (2015).

    CAS  PubMed  Google Scholar 

  36. Zweier, C. et al. Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt–Hopkins syndrome). Am. J. Hum. Genet. 80, 994–1001 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tonkin, E.T., Wang, T.J., Lisgo, S., Bamshad, M.J. & Strachan, T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat. Genet. 36, 636–641 (2004).

    CAS  PubMed  Google Scholar 

  38. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F. & Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–D798 (2015).

    PubMed  Google Scholar 

  39. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

  40. Skromne, I. & Stern, C.D. Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128, 2915–2927 (2001).

    CAS  PubMed  Google Scholar 

  41. Papp, B., Pál, C. & Hurst, L.D. Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194–197 (2003).

    CAS  PubMed  Google Scholar 

  42. Aitken, R.J. & Marshall Graves, J.A. The future of sex. Nature 415, 963 (2002).

    CAS  PubMed  Google Scholar 

  43. Cocquet, J. et al. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet. 8, e1002900 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cocquet, J. et al. The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol. 7, e1000244 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Conway, S.J. et al. Y353/B: a candidate multiple-copy spermiogenesis gene on the mouse Y chromosome. Mamm. Genome 5, 203–210 (1994).

    CAS  PubMed  Google Scholar 

  46. Mueller, J.L. et al. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat. Genet. 40, 794–799 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cockwell, A., MacKenzie, M., Youings, S. & Jacobs, P. A cytogenetic and molecular study of a series of 45,X fetuses and their parents. J. Med. Genet. 28, 151–155 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hassold, T., Benham, F. & Leppert, M. Cytogenetic and molecular analysis of sex-chromosome monosomy. Am. J. Hum. Genet. 42, 534–541 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hook, E.B. & Warburton, D. The distribution of chromosomal genotypes associated with Turner's syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum. Genet. 64, 24–27 (1983).

    CAS  PubMed  Google Scholar 

  50. Fechheimer, N.S. Origins of heteroploidy in chicken embryos. Poult. Sci. 60, 1365–1371 (1981).

    CAS  PubMed  Google Scholar 

  51. Bloom, S.E. Chromosome abnormalities in chicken (Gallus domesticus) embryos: types, frequencies and phenotypic effects. Chromosoma 37, 309–326 (1972).

    CAS  PubMed  Google Scholar 

  52. Zhao, D. et al. Somatic sex identity is cell autonomous in the chicken. Nature 464, 237–242 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 49, 10–16 (2017).

    CAS  PubMed  Google Scholar 

  54. Lee, M.K. et al. Construction and characterization of three BAC libraries for analysis of the chicken genome. Anim. Genet. 34, 151–152 (2003).

    CAS  PubMed  Google Scholar 

  55. Wallis, J.W. et al. A physical map of the chicken genome. Nature 432, 761–764 (2004).

    CAS  PubMed  Google Scholar 

  56. International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).

  57. Zody, M.C. Investigation of Mechanics of Mutation and Selection by Comparative Sequencing. PhD thesis, Uppsala Univ. (2009).

  58. Chen, N., Bellott, D.W., Page, D.C. & Clark, A.G. Identification of avian W-linked contigs by short-read sequencing. BMC Genomics 13, 183 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Itoh, Y. & Mizuno, S. Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosome Res. 10, 499–511 (2002).

    CAS  PubMed  Google Scholar 

  60. Solovei, I., Ogawa, A., Naito, M., Mizuno, S. & Macgregor, H. Specific chromomeres on the chicken W lampbrush chromosome contain specific repetitive DNA sequence families. Chromosome Res. 6, 323–327 (1998).

    CAS  PubMed  Google Scholar 

  61. Saitoh, Y. & Mizuno, S. Distribution of XhoI and EcoRI family repetitive DNA sequences into separate domains in the chicken W chromosome. Chromosoma 101, 474–477 (1992).

    CAS  PubMed  Google Scholar 

  62. Morisson, M. et al. ChickRH6: a chicken whole-genome radiation hybrid panel. Genet. Sel. Evol. 34, 521–533 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Slonim, D., Kruglyak, L., Stein, L. & Lander, E. Building human genome maps with radiation hybrids. J. Comput. Biol. 4, 487–504 (1997).

    CAS  PubMed  Google Scholar 

  64. Krasikova, A. et al. On the positions of centromeres in chicken lampbrush chromosomes. Chromosome Res. 14, 777–789 (2006).

    CAS  PubMed  Google Scholar 

  65. Flicek, P., Keibler, E., Hu, P., Korf, I. & Brent, M.R. Leveraging the mouse genome for gene prediction in human: from whole-genome shotgun reads to a global synteny map. Genome Res. 13, 46–54 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Korf, I., Flicek, P., Duan, D. & Brent, M.R. Integrating genomic homology into gene structure prediction. Bioinformatics 17 (Suppl. 1), S140–S148 (2001).

    PubMed  Google Scholar 

  67. Boardman, P.E. et al. A comprehensive collection of chicken cDNAs. Curr. Biol. 12, 1965–1969 (2002).

    PubMed  Google Scholar 

  68. Hedges, S.B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    CAS  PubMed  Google Scholar 

  69. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA–seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS  PubMed  Google Scholar 

  70. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Delany (University of California, Davis) for UCD001 DNA, A. Vignal and M. Morrison (INRA Toulouse) for ChickRH6 radiation hybrid panel DNA, M. Lovett (Washington University, St. Louis) for chicken embryonic fibroblasts, C. Friedman and B. Trask for flow-sorted chicken W chromosomes, F. McCarthy for permission to use the Chickspress RNA–seq data set (PRJNA204941), and the “Chromas” Saint-Petersburg University Resource Center and L. Rapoport for technical assistance. This work was supported by the National Institutes of Health and the Howard Hughes Medical Institute. S.G. and E.G. were supported by the Russian Foundation of Basic Research (grant 16-04-01823a).

Author information

Authors and Affiliations

Authors

Contributions

D.W.B., H.S., W.C.W., A.G.C., E.G., R.K.W., and D.C.P. planned the project. D.W.B., H.S., T.-J.C., D.L., and N.C. developed female-specific sequence-tagged sites. D.W.B., H.S., T.-J.C., and L.B. performed clone mapping. D.W.B., T.-J.C., N.K., T.G., and C.K. performed clone sequencing. S.G. and T.P. performed FISH analyses. D.W.B. and T.-J.C. performed RH mapping. D.W.B. and H.S. performed sequence analyses. D.W.B. and D.C.P. wrote the manuscript.

Corresponding author

Correspondence to David C Page.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Phase-contrast and fluorescence images of lampbrush W-chromosome spreads

(a,f,k) Images of chicken Z–W lampbrush bivalents in phase contrast, oriented with the terminal giant lumpy (TGL) loops and the W chromosome at the top and the Z chromosome at the bottom. Scale bar, 10 μm. (b,g,l) FISH localization of BAC probes (red) on the same lampbrush chromosomes counterstained with DAPI (blue). (ce,hj,mo) Magnification showing the DAPI-intense chromomeres of the W chromosome (c,h,m), the BAC hybridization signal (d,i,n), and the merged image (e,j,o). Chomomere 1 is furthest from the chiasma, and chromomere 7 is adjacent to the chiasma. CH261-75N4 localizes to chromomere 2 (b,e), CH261-107E4 localizes to chromomere 4 (g, j), and CH261-114G22 localizes to chromomere 7 (l,o).

Supplementary Figure 2 Dot plots of the pseudoautosomal region and the HINTW region.

Dot plots of nucleotide sequence identity in a window size of 50 bp and a step size of 1 bp. (a) Rectangular dot plot showing nucleotide identity between the most distal clones from the short arms of the W and Z chromosomes. The pseudoautosomal region of the Z and W chromosomes begins in telomeric repeats near the TCF4 gene. (b) Triangular dot plot showing nucleotide identity on the W chromosome in the 100 kb adjacent to the HINTW array. Two copies of HINTW are tandemly repeated outside the array.

Supplementary Figure 3 Ancestrally broad expression of Z–W pairs.

Violin plots marked with the median (black circle) and interquartile range (black bar) comparing the annotations of the human orthologs of ancestral Z–W gene pairs identified in chicken (dark pink); 4 species (chicken, collared flycatcher, crested ibis, and emu) (medium pink); and all 14 published female avian genomes (light pink) versus the human orthologs of the remainder of ancestral Z genes (light yellow). P values obtained using one-tailed Mann–Whitney U tests are reported with the associated test statistic, U. (a) The human orthologs of ancestral Z–W pairs are more broadly expressed in adult human tissues than other ancestral Z genes. Chicken Z–W pairs n = 26, other ancestral Z genes n = 516, P < 1.6 × 10–3, U = 9,012; 4 species Z–W pairs n = 70, other ancestral Z genes n = 472, P < 0.047, U = 18,563; 14 species Z–W pairs n = 133, other ancestral Z genes n = 409, P < 0.13, U = 28,960. (b) The human orthologs of ancestral Z–W pairs are more highly expressed in human blastocysts than other ancestral Z genes. Chicken Z–W pairs n = 26, other ancestral Z genes n = 495, P < 5.4 × 10–5, U = 9,333; 4 species Z–W pairs n = 68, other ancestral Z genes n = 453, P < 0.087, U = 18,156; 14 species Z–W pairs n = 129, other ancestral Z genes n = 392, P < 0.011, U = 28,720.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 541 kb)

Supplementary Table 1

Tiling path accessions and coordinates. (XLSX 59 kb)

Supplementary Table 2

Ancestral Z genes and associated statistics. (XLSX 295 kb)

Supplementary Table 3

Ancestral ZW pairs from all 14 species. (XLSX 90 kb)

Supplementary Table 4

GO term enrichment. (XLSX 41 kb)

Supplementary Data 1

FASTA sequence of the chicken W chromosome assembly. (TXT 6913 kb)

Supplementary Data 2

FASTA sequence of transcripts of chicken Z–W gene pairs. (TXT 20 kb)

Supplementary Data 3

FASTA-formatted alignment of chicken Z–W gene pairs and human orthologs. (TXT 158 kb)

Supplementary Data 4

Radiation hybrid mapping data. (TXT 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellott, D., Skaletsky, H., Cho, TJ. et al. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat Genet 49, 387–394 (2017). https://doi.org/10.1038/ng.3778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing