Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation


Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10−8; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Functional characterization of Atxn1, Ebf1, Rreb1 and Ube2e2.


  1. 1

    Ding, J. et al. The association of regional fat depots with hypertension in older persons of white and African American ethnicity. Am. J. Hypertens. 17, 971–976 (2004).

    Article  Google Scholar 

  2. 2

    Goodpaster, B.H. et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26, 372–379 (2003).

    Article  Google Scholar 

  3. 3

    Hayashi, T. et al. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann. Intern. Med. 140, 992–1000 (2004).

    Article  Google Scholar 

  4. 4

    Kanaya, A.M., Harris, T., Goodpaster, B.H., Tylavsky, F. & Cummings, S.R. Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults. Diabetes Care 27, 1375–1380 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Nicklas, B.J. et al. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care 26, 1413–1420 (2003).

    Article  Google Scholar 

  6. 6

    Kaess, B.M. et al. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 55, 2622–2630 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Rosenquist, K.J. et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging 6, 762–771 (2013).

    Article  Google Scholar 

  8. 8

    Britton, K.A. et al. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J. Am. Coll. Cardiol. 62, 921–925 (2013).

    Article  Google Scholar 

  9. 9

    Alvey, N.J. et al. Association of fat density with subclinical atherosclerosis. J. Am. Heart Assoc. 3, e000788 (2014).

    Article  Google Scholar 

  10. 10

    Rosenquist, K.J. et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. J. Clin. Endocrinol. Metab. 100, 227–234 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Abraham, T.M., Pedley, A., Massaro, J.M., Hoffmann, U. & Fox, C.S. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation 132, 1639–1647 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Fox, C.S. et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 8, e1002695 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Fox, C.S. et al. Genome-wide association of pericardial fat identifies a unique locus for ectopic fat. PLoS Genet. 8, e1002705 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Fox, C.S. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

    Article  Google Scholar 

  18. 18

    Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A. & Williams, R.M.J. Adjustment During Army Life (Princeton University Press, 1949).

  20. 20

    Baba, S., Jacene, H.A., Engles, J.M., Honda, H. & Wahl, R.L. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J. Nucl. Med. 51, 246–250 (2010).

    Article  Google Scholar 

  21. 21

    Hu, H.H., Chung, S.A., Nayak, K.S., Jackson, H.A. & Gilsanz, V. Differential computed tomographic attenuation of metabolically active and inactive adipose tissues: preliminary findings. J. Comput. Assist. Tomogr. 35, 65–71 (2011).

    Article  Google Scholar 

  22. 22

    Heid, I.M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Yamauchi, T. et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet. 42, 864–868 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Hara, K. et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum. Mol. Genet. 23, 239–246 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Zillikens, M.C. et al. Sex-specific genetic effects influence variation in body composition. Diabetologia 51, 2233–2241 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  Google Scholar 

  30. 30

    Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  Google Scholar 

  31. 31

    Johnson, A.D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Manning, A.K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339–344 (2011).

  35. 35

    Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Ehret, G.B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Feng, S., Wang, S., Chen, C.C. & Lan, L. GWAPower: a statistical power calculation software for genome-wide association studies with quantitative traits. BMC Genet. 12, 12 (2011).

    Article  Google Scholar 

  38. 38

    Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Greenawalt, D.M. et al. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res. 21, 1008–1016 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    CAS  Article  Google Scholar 

  41. 41

    GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  42. 42

    Foroughi Asl, H. et al. Expression quantitative trait loci acting across multiple tissues are enriched in inherited risk for coronary artery disease. Circ. Cardiovasc. Genet. 8, 305–315 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Zhang, X. et al. Synthesis of 53 tissue and cell line expression QTL data sets reveals master eQTLs. BMC Genomics 15, 532 (2014).

    Article  Google Scholar 

  44. 44

    Kim, S.M. et al. Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab. 20, 1049–1058 (2014).

    CAS  Article  Google Scholar 

Download references


The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute, the National Institutes of Health, or the US Department of Health and Human Services. Please see the Supplementary Note for acknowledgments and funding sources.

Author information




X.G., A.H.K., J.K., L.J.L., M.O., P.A.P., I.B.B., D.W.B., S.A.C., J.D., V.G., T.B.H., C.D.L., L. Lind, Y.L., J.I.R., B.T. and M.A. contributed to the study design; Yi Zhang, L.J.L., M.O., P.A.P., J.G.T., I.B.B., D.W.B., J.J.C., S.A.C., V.G., T.B.H., L. Lind, B.D.M., T.H.M., J.I.R., A.R.S., H.V., J.G.W. and M.A. contributed to study management; A.H.K., J.K., M.K.W., D.W.B., S.A.C., V.G., L. Lind, B.D.M., T.H.M., A.R.S., B.T. and H.V. recruited subjects; A.Y.C., X.D., V.A.F., Yang Zhang, M.F.F., C.-T.L., O.W., A.C.C., Q.D., X.G., N.L.H.-C., X.L., L. Lu, J.R.O., A.P., A.V.S., Yi Zhang, A.H.K., M.O., P.A.P., J.G.T., M.K.W., L.F.B., I.B.B., D.W.B., J.J.C., S.A.C., J.D., N.F., S.L.R.K., C.D.L., Y.L., B.D.M., J.I.R., A.R.S., B.T., H.W., M.A., C.M.L., W.G., L.A.C., M.L.S. and C.S.F. interpreted results; A.Y.C., Yang Zhang, M.F.F., X.G., J.W.K., Yi Zhang, A.H.K., M.K.W., I.B.B., C.M.L., M.L.S. and C.S.F. drafted the manuscript; A.Y.C., X.D., V.A.F., M.F.F., C.-T.L., O.W., A.C.C., X.G., N.L.H.-C., J.W.K., X.L., L. Lu, A.M., J.R.O., A.P., Yi Zhang, G.H., A.H.K., J.K., M.N., M.O., P.A.P., J.G.T., L.F.B., J.B., I.B.B., D.W.B., J.J.C., S.A.C., J.D., N.F., E.I., S.L.R.K., C.D.L., L. Lind, Y.L., B.D.M., A.P.M., T.H.M., J.I.R., A.R.S., B.T., H.V., H.W., M.A., C.M.L., W.G., L.A.C., M.L.S. and C.S.F. performed critical review; A.Y.C., X.D., V.A.F., A.D., Yang Zhang, M.F.F., A.C.C., Q.D., T.D.D., J.D.E., X.G., N.L.H.-C., T.K., J.W.K., L.A.L., X.L., K.L., L. Lu, A.M., J.R.O., A.P., J.M.P., A.V.S., J.Y., L.F.B., J.D., C.D.L., Y.L., B.D.M., A.P.M., C.M.L. contributed to statistical methods and analysis; Yi Zhang, G.H., M.O., D.W.B., S.A.C., E.I., S.L.R.K., Y.L., A.P.M., J.I.R., A.R.S., B.T. and C.M.L. performed genotyping; A.Y.C., X.D., V.A.F., M.F.F., C.-T.L., A.C.C., J.D.E., A.D.J., T.K., A.V.S. and Yi Zhang contributed to bioinformatics; Yang Zhang, O.W., R.L., N.F., W.G. and M.L.S. worked on data collection; and Yang Zhang and M.L.S. contributed to animal work and functional data.

Corresponding authors

Correspondence to Audrey Y Chu or Matthew L Steinhauser or Caroline S Fox.

Ethics declarations

Competing interests

C.S.F. and A.Y.C. are currently employed by Merck Research Laboratories.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–17, Supplementary Figures 1–6 and Supplementary Note (PDF 6689 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chu, A., Deng, X., Fisher, V. et al. Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nat Genet 49, 125–130 (2017).

Download citation

Further reading