Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato

Abstract

Plants evolved so that their flowering is triggered by seasonal changes in day length1. However, day-length sensitivity in crops limits their geographical range of cultivation, and thus modification of the photoperiod response was critical for their domestication2,3,4,5,6,7,8,9,10,11. Here we show that loss of day-length-sensitive flowering in tomato was driven by the florigen paralog and flowering repressor SELF-PRUNING 5G (SP5G). SP5G expression is induced to high levels during long days in wild species, but not in cultivated tomato because of cis-regulatory variation. CRISPR/Cas9-engineered mutations in SP5G cause rapid flowering and enhance the compact determinate growth habit of field tomatoes, resulting in a quick burst of flower production that translates to an early yield. Our findings suggest that pre-existing variation in SP5G facilitated the expansion of cultivated tomato beyond its origin near the equator in South America, and they provide a compelling demonstration of the power of gene editing to rapidly improve yield traits in crop breeding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduced SP5G expression in long days explains the loss of photoperiod-sensitive flowering in cultivated tomato.
Figure 2: CRISPR/Cas9-engineered mutations in SP5G cause rapid flowering regardless of day length.
Figure 3: The flower-repressing activity of SP5G is mediated by repression of the florigen gene SFT.
Figure 4: Introducing CR-sp5g mutations into the sp determinate background results in highly compact 'double-determinate' plants with early yields.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).

    Article  PubMed  Google Scholar 

  2. Xu, M. et al. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 13, 91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, Y. et al. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol. Biol. 16, 79 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Turner, A., Beales, J., Faure, S., Dunford, R.P. & Laurie, D.A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kloosterman, B. et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495, 246–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ogiso-Tanaka, E. et al. Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS One 8, e75959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi, Y., Teshima, K.M., Yokoi, S., Innan, H. & Shimamoto, K. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc. Natl. Acad. Sci. USA 106, 4555–4560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Comadran, J. et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44, 1388–1392 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Iwata, H. et al. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 69, 116–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Blackman, B.K., Strasburg, J.L., Raduski, A.R., Michaels, S.D. & Rieseberg, L.H. The role of recently derived FT paralogs in sunflower domestication. Curr. Biol. 20, 629–635 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sawa, M., Nusinow, D.A., Kay, S.A. & Imaizumi, T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261–265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suárez-López, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120 (2001).

    Article  PubMed  Google Scholar 

  14. Valverde, F. et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003–1006 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Tiwari, S.B. et al. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 187, 57–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Izawa, T. et al. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16, 2006–2020 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishikawa, R. et al. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol. Genet. Genomics 285, 461–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Pnueli, L. et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125, 1979–1989 (1998).

    CAS  PubMed  Google Scholar 

  19. Pnueli, L. et al. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13, 2687–2702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wittwer, S.H. Photoperiod and flowering in Tomato (Lycopersicon esculentum Mill.). Proc. Am. Soc. Hortic. Sci. 83, 688–694 (1963).

    Google Scholar 

  21. Binchy, A. & Morgan, J.V. Influence of light intensity and photoperiod on inflorescence initiation in tomatoes. Isr. J. Agric. Res. 9, 261–269 (1970).

    Google Scholar 

  22. Hurd, R.G. Long-day effects on growth and flower initiation of tomato plants in low light. Ann. Appl. Biol. 73, 221–228 (1973).

    Article  Google Scholar 

  23. Peralta, I.E. & Spooner, D.M. Morphological characterization and relationships of wild tomatoes (Solanum L. sect. Lycopersicon). Mono. Syst. Bot. 104, 227–257 (2005).

    Google Scholar 

  24. Ranc, N., Muños, S., Santoni, S. & Causse, M. A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol. 8, 130 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pease, J.B., Haak, D.C., Hahn, M.W. & Moyle, L.C. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol. 14, e1002379 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Takagi, H. et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74, 174–183 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Lifschitz, E. et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103, 6398–6403 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shalit, A. et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. USA 106, 8392–8397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krieger, U., Lippman, Z.B. & Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42, 459–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, K., Liberatore, K.L., Park, S.J., Alvarez, J.P. & Lippman, Z.B. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet. 9, e1004043 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Park, S.J. et al. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat. Genet. 46, 1337–1342 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Lifschitz, E., Ayre, B.G. & Eshed, Y. Florigen and anti-florigen—a systemic mechanism for coordinating growth and termination in flowering plants. Front. Plant Sci. 5, 465 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cao, K. et al. Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front. Plant Sci. 6, 1213 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hanzawa, Y., Money, T. & Bradley, D. A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. USA 102, 7748–7753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahn, J.H. et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25, 605–614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pin, P.A. et al. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330, 1397–1400 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Ho, W.W.H. & Weigel, D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26, 552–564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bolger, A. et al. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat. Genet. 46, 1034–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. deVicente, M.C. & Tanksley, S.D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134, 585–596 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones, C.M., Rick, C.M., Adams, D., Jernstedt, J. & Chetelat, R.T. Genealogy and fine mapping of obscuravenosa, a gene affecting the distribution of chloroplasts in leaf veins, and evidence of selection during breeding of tomatoes (Lycopersicon esculentum; Solanaceae). Am. J. Bot. 94, 935–947 (2007).

    Article  PubMed  Google Scholar 

  42. Chitwood, D.H. et al. A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25, 2465–2481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Birchler, J.A. & Veitia, R.A. The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol. 186, 54–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Park, S.J., Jiang, K., Schatz, M.C. & Lippman, Z.B. Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl. Acad. Sci. USA 109, 639–644 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

  46. Strickler, S.R. et al. Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives. PeerJ 3, e793 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu, L. et al. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T. Nat. Commun. 5, 4558 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  49. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J. & Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Brooks, C., Nekrasov, V., Lippman, Z.B. & Van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292–1297 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thouet, J., Quinet, M., Ormenese, S., Kinet, J.-M. & Périlleux, C. Revisiting the involvement of SELF-PRUNING in the sympodial growth of tomato. Plant Physiol. 148, 61–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yeager, A.F. Determinate growth in the tomato. J. Hered. 18, 263–266 (1927).

    Article  Google Scholar 

  53. MacArthur, J.W. Inherited characters in tomato. I—The self pruning habit. J. Hered. 23, 394–395 (1932).

    Article  Google Scholar 

  54. Abelenda, J.A., Cruz-Oró, E., Franco-Zorrilla, J.M. & Prat, S. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr. Biol. 26, 872–881 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Taoka, K. et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Jaeger, K.E., Pullen, N., Lamzin, S., Morris, R.J. & Wigge, P.A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25, 820–833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rick, C.M. The Tomato. Sci. Am. 239, 76–87 (1978).

    Article  Google Scholar 

  58. Müller, N.A. et al. Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat. Genet. 48, 89–93 (2016).

    Article  PubMed  Google Scholar 

  59. Meng, X., Muszynski, M.G. & Danilevskaya, O.N. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23, 942–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hecht, V. et al. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23, 147–161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  63. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Werner, S., Engler, C., Weber, E., Gruetzner, R. & Marillonnet, S. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng. Bugs 3, 38–43 (2012).

    PubMed  Google Scholar 

  65. Van Eck, J., Kirk, D.D. & Walmsley, A.M. in Agrobacterium Protocols (ed. Wang, K.) 459–473 (Humana Press Inc., 2006).

Download references

Acknowledgements

We thank all members of the Lippman lab and Y. Eshed for valuable discussions. We also thank M. Koornneef for his constant support and useful discussions. We thank C. Brooks, A. Krainer and J. Dalrymple for technical support; T. Mulligan; S. Vermylen; A. Krainer from CSHL; K. Dunn and M. Treat from Robert Treat Farm in Milford, Connecticut; and staff from Cornell University's Long Island Horticultural Research and Extension Center in Riverhead, New York, for assistance with plant care. We thank U. Tartler and A. Lautscham for their help at the Max Planck Institute for Plant Breeding Research. This research was supported by an EMBO Long-Term Fellowship (ALTF 1589-2014 to S.S.), the Next-Generation BioGreen 21 Program (PMBC, PJ011912012016 to S.J.P.), the German Research Foundation (DFG project number SCHM2793/1-1 to I.S.), the Max Planck Society (I.S.), the German Research Foundation under the German-Israeli Project Cooperation program (DFG DIP project number FE552/12-1 to J.M.J.-G.), the National Science Foundation Plant Genome Research Program (IOS-1237880 to J.V.E. and Z.B.L.), BARD (IS-4818-15 to Z.B.L.), the US-Israel Binational Agricultural Research & Development fund (Z.B.L.), and an Agriculture and Food Research Initiative competitive grant from the USDA National Institute of Food and Agriculture (2016-67013-24452 to Z.B.L.).

Author information

Authors and Affiliations

Authors

Contributions

S.S., N.A.M., S.J.P., I.S., K.J., R.H., L.Z., J.V.E., J.M.J.-G. and Z.B.L. designed and planned experiments. S.S., N.A.M., S.J.P., I.S., K.J., R.H., L.Z., J.M.J.-G. and Z.B.L. performed experiments and collected the data. S.S., N.A.M., S.J.P., I.S., K.J., R.H., J.M.J.-G. and Z.B.L. analyzed the data. S.S., N.A.M., J.M.J.-G. and Z.B.L designed the research. S.S. and Z.B.L. wrote the paper.

Corresponding authors

Correspondence to José M Jiménez-Gómez or Zachary B Lippman.

Ethics declarations

Competing interests

S.S., S.J.P. and Z.B.L. have filed a PCT patent application based in part on this work (US Provisional Application No. 62/320,439) with the US Patent and Trademark Office.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1–5 (PDF 5633 kb)

Supplementary Table

Source data for Supplementary Figure 14 (XLSX 25 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyk, S., Müller, N., Park, S. et al. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49, 162–168 (2017). https://doi.org/10.1038/ng.3733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing