Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis

Abstract

The TMPRSS2-ERG fusion, present in approximately 50% of prostate cancers, is less common in prostatic intraepithelial neoplasia (PIN), raising questions about whether TMPRSS2-ERG contributes to disease initiation. We identified the translational start site of a common TMPRSS2-ERG fusion and showed that transgenic TMPRSS2-ERG mice develop PIN, but only in the context of PI3-kinase pathway activation. TMPRSS2-ERG–positive human tumors are also enriched for PTEN loss, suggesting cooperation in prostate tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TMPRSS2-ERG fusion transcript produces a truncated ERG protein product.
Figure 2: TMPRSS2-ERG fusion and PI3K-pathway activation are cooperative events in prostate cancer.

Similar content being viewed by others

References

  1. Kumar-Sinha, C., Tomlins, S.A. & Chinnaiyan, A.M. Nat. Rev. Cancer 8, 497–511 (2008).

    Article  CAS  Google Scholar 

  2. Perner, S. et al. Am. J. Surg. Pathol. 31, 882–888 (2007).

    Article  Google Scholar 

  3. Tomlins, S.A. et al. Science 310, 644–648 (2005).

    Article  CAS  Google Scholar 

  4. Jhavar, S. et al. J. Mol. Diagn. 10, 50–57 (2008).

    Article  CAS  Google Scholar 

  5. Ellwood-Yen, K. et al. Cancer Cell 4, 223–238 (2003).

    Article  CAS  Google Scholar 

  6. Zhang, J., Thomas, T.Z., Kasper, S. & Matusik, R.J. Endocrinology 141, 4698–4710 (2000).

    Article  CAS  Google Scholar 

  7. Majumder, P.K. et al. Proc. Natl. Acad. Sci. USA 100, 7841–7846 (2003).

    Article  CAS  Google Scholar 

  8. Carver, B.S. et al. Nat. Genet. advance online publication, doi:10.1038/ng.370 (26 April 2009).

  9. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P.P. Nat. Genet. 19, 348–355 (1998).

    Article  CAS  Google Scholar 

  10. Attard, G. et al. Oncogene 27, 253–263 (2008).

    Article  CAS  Google Scholar 

  11. Yoshimoto, M. et al. Mod. Pathol. 21, 1451–1460 (2008).

    Article  CAS  Google Scholar 

  12. Sun, C. et al. Oncogene 27, 5348–5353 (2008).

    Article  CAS  Google Scholar 

  13. Klezovitch, O. et al. Proc. Natl. Acad. Sci. USA 105, 2105–2110 (2008).

    Article  Google Scholar 

  14. Tomlins, S.A. et al. Neoplasia 10, 177–188 (2008).

    Article  CAS  Google Scholar 

  15. Xu, Q. et al. Proc. Natl. Acad. Sci. USA 104, 17771–17776 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C.K. is supported by a NIH/NCI Ruth L. Kirschstein NRSA (7F32CA113132). C.L.S. is supported by the Howard Hughes Medical Institute and the Doris Duke Foundation. B.S.T. is supported by a MSKCC Geoffrey Beene Cancer Research Center fellowship. We thank K. Yen, N. Clegg, Y. Chen, T. Shamu and the MSKCC CMG, Proteomics, and Molecular Cytology Core Facilities for technical help and/or discussions. We also thank P.P. Pandolfi (Beth Israel Deaconess Medical Center, Harvard University) for sharing unpublished results and V. Vasioukhin (Fred Hutchinson Cancer Research Center) for providing transgenic prostate lobes.

Author information

Authors and Affiliations

Authors

Contributions

J.C.K., J.X., J.W., D.H.L., B.S.C. and C.L.S. designed, created and characterized the transgenic animals. S.S.C. and R.D.C. performed the pathological analysis. J.X. and C.L.S. identified the potential start site. H.H., B.S.T., C.S. and W.L.G. performed and analyzed the CGH and exon array experiments. J.C.K. and C.L.S. wrote the initial draft of the manuscript and all authors contributed to the final version.

Corresponding author

Correspondence to Charles L Sawyers.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Methods (PDF 961 kb)

Supplementary Table 1

aCGH data (XLS 96 kb)

Supplementary Table 2

Raw expression data (XLS 461 kb)

Supplementary Table 3

Log transformed ERG core expression data (XLS 107 kb)

Supplementary Table 4

Merged expression data (XLS 38 kb)

Supplementary Table 5

Discretized aCGH and expression data (XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, J., Xu, J., Wongvipat, J. et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41, 524–526 (2009). https://doi.org/10.1038/ng.371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing