Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The regulated retrotransposon transcriptome of mammalian cells

Abstract

Although repetitive elements pervade mammalian genomes, their overall contribution to transcriptional activity is poorly defined. Here, as part of the FANTOM4 project, we report that 6–30% of cap-selected mouse and human RNA transcripts initiate within repetitive elements. Analysis of approximately 250,000 retrotransposon-derived transcription start sites shows that the associated transcripts are generally tissue specific, coincide with gene-dense regions and form pronounced clusters when aligned to full-length retrotransposon sequences. Retrotransposons located immediately 5′ of protein-coding loci frequently function as alternative promoters and/or express noncoding RNAs. More than a quarter of RefSeqs possess a retrotransposon in their 3′ UTR, with strong evidence for the reduced expression of these transcripts relative to retrotransposon-free transcripts. Finally, a genome-wide screen identifies 23,000 candidate regulatory regions derived from retrotransposons, in addition to more than 2,000 examples of bidirectional transcription. We conclude that retrotransposon transcription has a key influence upon the transcriptional output of the mammalian genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of repetitive element expression in mouse and human.
Figure 2: Transcription start site positions in human L1 fragments and full-length copies aligned to a consensus L1 sequence.
Figure 3: Abundance of expressed repetitive elements proximal to known transcripts.
Figure 4: Validation of a SINE-derived alternative promoter in human CSF1R.
Figure 5: Inverse correlation between mean RefSeq CAGE expression and 3′ UTR retrotransposon percentage (x).

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

    Article  Google Scholar 

  2. Margulies, E.H. et al. Comparative sequencing provides insights about the structure and conservation of marsupial and monotreme genomes. Proc. Natl. Acad. Sci. USA 102, 3354–3359 (2005).

    Article  CAS  Google Scholar 

  3. Babushok, D.V., Ostertag, E.M. & Kazazian, H.H. Jr. Current topics in genome evolution: molecular mechanisms of new gene formation. Cell. Mol. Life Sci. 64, 542–554 (2007).

    Article  CAS  Google Scholar 

  4. Hasler, J., Samuelsson, T. & Strub, K. Useful 'junk': Alu RNAs in the human transcriptome. Cell. Mol. Life Sci. 64, 1793–1800 (2007).

    Article  CAS  Google Scholar 

  5. Jurka, J. Evolutionary impact of human Alu repetitive elements. Curr. Opin. Genet. Dev. 14, 603–608 (2004).

    Article  CAS  Google Scholar 

  6. Kazazian, H.H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  Google Scholar 

  7. Peaston, A.E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    Article  CAS  Google Scholar 

  8. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).

    Article  CAS  Google Scholar 

  9. Han, J.S., Szak, S.T. & Boeke, J.D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004).

    Article  CAS  Google Scholar 

  10. Ustyugova, S.V., Lebedev, Y.B. & Sverdlov, E.D. Long L1 insertions in human gene introns specifically reduce the content of corresponding primary transcripts. Genetica 128, 261–272 (2006).

    Article  CAS  Google Scholar 

  11. Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379 (2002).

    Article  CAS  Google Scholar 

  12. Yang, N. & Kazazian, H.H. Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13, 763–771 (2006).

    Article  CAS  Google Scholar 

  13. McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216 (1956).

    Article  CAS  Google Scholar 

  14. Lunyak, V.V. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248–251 (2007).

    Article  CAS  Google Scholar 

  15. Lei, E.P. & Corces, V.G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat. Genet. 38, 936–941 (2006).

    Article  CAS  Google Scholar 

  16. Noma, K., Cam, H.P., Maraia, R.J. & Grewal, S.I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006).

    Article  CAS  Google Scholar 

  17. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670 (2007).

    Article  CAS  Google Scholar 

  18. Mazo, A., Hodgson, J.W., Petruk, S., Sedkov, Y. & Brock, H.W. Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007).

    Article  CAS  Google Scholar 

  19. Schmitt, S. & Paro, R. RNA at the steering wheel. Genome Biol. 7, 218 (2006).

    Article  Google Scholar 

  20. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  Google Scholar 

  21. Whitelaw, E. & Martin, D.I. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).

    Article  CAS  Google Scholar 

  22. Conley, A.B., Miller, W.J. & Jordan, I.K. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet. 24, 53–56 (2008).

    Article  CAS  Google Scholar 

  23. Swergold, G.D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990).

    Article  CAS  Google Scholar 

  24. Matlik, K., Redik, K. & Speek, M. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006, 71753 (2006).

    Article  Google Scholar 

  25. Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).

    Article  CAS  Google Scholar 

  26. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    Article  CAS  Google Scholar 

  27. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. USA 100, 15776–15781 (2003).

    Article  CAS  Google Scholar 

  28. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  Google Scholar 

  29. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    Article  CAS  Google Scholar 

  30. Carninci, P. et al. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res. 10, 1617–1630 (2000).

    Article  CAS  Google Scholar 

  31. Faulkner, G.J. et al. A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics 91, 281–288 (2008).

    Article  CAS  Google Scholar 

  32. Nilsson, M. & Bohm, S. Inducible and cell type-specific expression of VL30 U3 subgroups correlate with their enhancer design. J. Virol. 68, 276–288 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandelin, A. et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8, 424–436 (2007).

    Article  CAS  Google Scholar 

  34. Denoeud, F. et al. Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res. 17, 746–759 (2007).

    Article  CAS  Google Scholar 

  35. Olivarius, S., Plessy, C. & Carninci, P. High-throughput verifiation of transcriptional starting sites by Deep-RACE. Biotechniques 46, 130–132 (2009).

    Article  CAS  Google Scholar 

  36. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    Article  CAS  Google Scholar 

  37. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  Google Scholar 

  38. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).

  39. Seidl, C.I., Stricker, S.H. & Barlow, D.P. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J. 25, 3565–3575 (2006).

    Article  CAS  Google Scholar 

  40. Babushok, D.V. & Kazazian, H.H. Jr. Progress in understanding the biology of the human mutagen LINE-1. Hum. Mutat. 28, 527–539 (2007).

    Article  CAS  Google Scholar 

  41. Garcia-Perez, J.L. et al. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16, 1569–1577 (2007).

    Article  CAS  Google Scholar 

  42. van den Hurk, J.A. et al. L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 16, 1587–1592 (2007).

    Article  CAS  Google Scholar 

  43. Ferrigno, O. et al. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat. Genet. 28, 77–81 (2001).

    CAS  PubMed  Google Scholar 

  44. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  Google Scholar 

  45. Chen, L.L., DeCerbo, J.N. & Carmichael, G.G. Alu element-mediated gene silencing. EMBO J. 27, 1694–1705 (2008).

    Article  CAS  Google Scholar 

  46. Tam, O.H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    Article  CAS  Google Scholar 

  47. Shibata, K. et al. RIKEN integrated sequence analysis (RISA) system—384-format sequencing pipeline with 384 multicapillary sequencer. Genome Res. 10, 1757–1771 (2000).

    Article  CAS  Google Scholar 

  48. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  49. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  Google Scholar 

  50. de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.J.F. is supported by an Australian Postgraduate Award through the Australian government Department of Education, Training and Youth Affairs (DETYA). A.R.R.F. is funded by a CJ Martin Fellowship from the Australian NHMRC (ID 428261). K.S. and K.M.I. are members of the CRC for Chronic Inflammatory Diseases. P.C. and Y.H. are supported by the National Project on Protein Structural and Functional Analysis from MEXT and the National Project on Genome Network Analysis and the RIKEN Genome Exploration Research Project from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. D.A.H. acknowledges the funding of the ARC Special Research Centre for Functional and Applied Genomics and the NHMRC. S.M.G. holds a Senior Research Fellowship with the Australian NHMRC. N.C. is supported by a UQ postdoctoral research fellowship. V.O. is supported by Telethon Foundation (TCP00094), Associazione Italiana Ricerca sul Cancro (AIRC) and Fondazione Compagnia di San Paolo, and N.H. is supported by an EMBO long-term fellowship.

Author information

Authors and Affiliations

Authors

Contributions

G.J.F. led the bioinformatic analysis and drafting of the manuscript. K.M.I., K.S., N.C., A.L.S., T.L., K.W., N.H., T.A., J.K., H.S., Y.H., S.M.G. and P.C. provided data and resources. Y.K., C.O.D. and A.R.R.F. provided bioinformatic analyses. G.J.F. and P.C. designed the experiments. S.W., C.P., A.L.S., H.T. and N.C. performed validation. D.A.H., V.O., S.M.G. and P.C. interpreted data and edited the manuscript. P.C. organized the project.

Corresponding authors

Correspondence to Valerio Orlando, Sean M Grimmond or Piero Carninci.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–19, Supplementary Tables 1–8 and Supplementary Methods (PDF 1126 kb)

Supplementary Data 1

CAGE library expression clustering by retrotransposon superfamily, family and subfamily (XLS 6576 kb)

Supplementary Data 2

List of putative alternative promoters in human (ZIP 4444 kb)

Supplementary Data 3

List of retrotransposon alternative promoters confirmed by ESTs (XLS 309 kb)

Supplementary Data 4

List of mouse and human RefSeqs containing retrotransposons that overlap exonic sequence (XLS 3624 kb)

Supplementary Data 5

List of human and mouse bidirectional promoter pairs and putative boundary elements (XLS 931 kb)

Supplementary Data 6

List of human bidirectional promoter pairs generating at least one short RNA sequence (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, G., Kimura, Y., Daub, C. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41, 563–571 (2009). https://doi.org/10.1038/ng.368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing