Abstract
Although repetitive elements pervade mammalian genomes, their overall contribution to transcriptional activity is poorly defined. Here, as part of the FANTOM4 project, we report that 6–30% of cap-selected mouse and human RNA transcripts initiate within repetitive elements. Analysis of approximately 250,000 retrotransposon-derived transcription start sites shows that the associated transcripts are generally tissue specific, coincide with gene-dense regions and form pronounced clusters when aligned to full-length retrotransposon sequences. Retrotransposons located immediately 5′ of protein-coding loci frequently function as alternative promoters and/or express noncoding RNAs. More than a quarter of RefSeqs possess a retrotransposon in their 3′ UTR, with strong evidence for the reduced expression of these transcripts relative to retrotransposon-free transcripts. Finally, a genome-wide screen identifies 23,000 candidate regulatory regions derived from retrotransposons, in addition to more than 2,000 examples of bidirectional transcription. We conclude that retrotransposon transcription has a key influence upon the transcriptional output of the mammalian genome.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).
Margulies, E.H. et al. Comparative sequencing provides insights about the structure and conservation of marsupial and monotreme genomes. Proc. Natl. Acad. Sci. USA 102, 3354–3359 (2005).
Babushok, D.V., Ostertag, E.M. & Kazazian, H.H. Jr. Current topics in genome evolution: molecular mechanisms of new gene formation. Cell. Mol. Life Sci. 64, 542–554 (2007).
Hasler, J., Samuelsson, T. & Strub, K. Useful 'junk': Alu RNAs in the human transcriptome. Cell. Mol. Life Sci. 64, 1793–1800 (2007).
Jurka, J. Evolutionary impact of human Alu repetitive elements. Curr. Opin. Genet. Dev. 14, 603–608 (2004).
Kazazian, H.H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).
Peaston, A.E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).
Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).
Han, J.S., Szak, S.T. & Boeke, J.D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004).
Ustyugova, S.V., Lebedev, Y.B. & Sverdlov, E.D. Long L1 insertions in human gene introns specifically reduce the content of corresponding primary transcripts. Genetica 128, 261–272 (2006).
Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379 (2002).
Yang, N. & Kazazian, H.H. Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13, 763–771 (2006).
McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216 (1956).
Lunyak, V.V. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248–251 (2007).
Lei, E.P. & Corces, V.G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat. Genet. 38, 936–941 (2006).
Noma, K., Cam, H.P., Maraia, R.J. & Grewal, S.I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006).
Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670 (2007).
Mazo, A., Hodgson, J.W., Petruk, S., Sedkov, Y. & Brock, H.W. Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007).
Schmitt, S. & Paro, R. RNA at the steering wheel. Genome Biol. 7, 218 (2006).
Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).
Whitelaw, E. & Martin, D.I. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).
Conley, A.B., Miller, W.J. & Jordan, I.K. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet. 24, 53–56 (2008).
Swergold, G.D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990).
Matlik, K., Redik, K. & Speek, M. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006, 71753 (2006).
Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).
Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).
Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. USA 100, 15776–15781 (2003).
Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).
Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).
Carninci, P. et al. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res. 10, 1617–1630 (2000).
Faulkner, G.J. et al. A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics 91, 281–288 (2008).
Nilsson, M. & Bohm, S. Inducible and cell type-specific expression of VL30 U3 subgroups correlate with their enhancer design. J. Virol. 68, 276–288 (1994).
Sandelin, A. et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8, 424–436 (2007).
Denoeud, F. et al. Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res. 17, 746–759 (2007).
Olivarius, S., Plessy, C. & Carninci, P. High-throughput verifiation of transcriptional starting sites by Deep-RACE. Biotechniques 46, 130–132 (2009).
Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).
Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).
Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).
Seidl, C.I., Stricker, S.H. & Barlow, D.P. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J. 25, 3565–3575 (2006).
Babushok, D.V. & Kazazian, H.H. Jr. Progress in understanding the biology of the human mutagen LINE-1. Hum. Mutat. 28, 527–539 (2007).
Garcia-Perez, J.L. et al. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16, 1569–1577 (2007).
van den Hurk, J.A. et al. L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 16, 1587–1592 (2007).
Ferrigno, O. et al. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat. Genet. 28, 77–81 (2001).
Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).
Chen, L.L., DeCerbo, J.N. & Carmichael, G.G. Alu element-mediated gene silencing. EMBO J. 27, 1694–1705 (2008).
Tam, O.H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).
Shibata, K. et al. RIKEN integrated sequence analysis (RISA) system—384-format sequencing pipeline with 384 multicapillary sequencer. Genome Res. 10, 1757–1771 (2000).
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).
Acknowledgements
G.J.F. is supported by an Australian Postgraduate Award through the Australian government Department of Education, Training and Youth Affairs (DETYA). A.R.R.F. is funded by a CJ Martin Fellowship from the Australian NHMRC (ID 428261). K.S. and K.M.I. are members of the CRC for Chronic Inflammatory Diseases. P.C. and Y.H. are supported by the National Project on Protein Structural and Functional Analysis from MEXT and the National Project on Genome Network Analysis and the RIKEN Genome Exploration Research Project from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. D.A.H. acknowledges the funding of the ARC Special Research Centre for Functional and Applied Genomics and the NHMRC. S.M.G. holds a Senior Research Fellowship with the Australian NHMRC. N.C. is supported by a UQ postdoctoral research fellowship. V.O. is supported by Telethon Foundation (TCP00094), Associazione Italiana Ricerca sul Cancro (AIRC) and Fondazione Compagnia di San Paolo, and N.H. is supported by an EMBO long-term fellowship.
Author information
Authors and Affiliations
Contributions
G.J.F. led the bioinformatic analysis and drafting of the manuscript. K.M.I., K.S., N.C., A.L.S., T.L., K.W., N.H., T.A., J.K., H.S., Y.H., S.M.G. and P.C. provided data and resources. Y.K., C.O.D. and A.R.R.F. provided bioinformatic analyses. G.J.F. and P.C. designed the experiments. S.W., C.P., A.L.S., H.T. and N.C. performed validation. D.A.H., V.O., S.M.G. and P.C. interpreted data and edited the manuscript. P.C. organized the project.
Corresponding authors
Supplementary information
Supplementary Text and Figures
Supplementary Note, Supplementary Figures 1–19, Supplementary Tables 1–8 and Supplementary Methods (PDF 1126 kb)
Supplementary Data 1
CAGE library expression clustering by retrotransposon superfamily, family and subfamily (XLS 6576 kb)
Supplementary Data 2
List of putative alternative promoters in human (ZIP 4444 kb)
Supplementary Data 3
List of retrotransposon alternative promoters confirmed by ESTs (XLS 309 kb)
Supplementary Data 4
List of mouse and human RefSeqs containing retrotransposons that overlap exonic sequence (XLS 3624 kb)
Supplementary Data 5
List of human and mouse bidirectional promoter pairs and putative boundary elements (XLS 931 kb)
Supplementary Data 6
List of human bidirectional promoter pairs generating at least one short RNA sequence (XLS 26 kb)
Rights and permissions
About this article
Cite this article
Faulkner, G., Kimura, Y., Daub, C. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41, 563–571 (2009). https://doi.org/10.1038/ng.368
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.368
This article is cited by
-
Exploratory analysis of L1 retrotransposons expression in autism
Molecular Autism (2023)
-
LINE-1 regulates cortical development by acting as long non-coding RNAs
Nature Communications (2023)
-
The transposable element-derived transcript of LIN28B has a placental origin and is not specific to tumours
Molecular Genetics and Genomics (2023)
-
Locus-specific expression of transposable elements in single cells with CELLO-seq
Nature Biotechnology (2022)
-
Full-length transcripts facilitates Portunus trituberculatus genome structure annotation
Journal of Oceanology and Limnology (2022)