Abstract

Neurodevelopmental disorders with periventricular nodular heterotopia (PNH) are etiologically heterogeneous, and their genetic causes remain in many cases unknown. Here we show that missense mutations in NEDD4L mapping to the HECT domain of the encoded E3 ubiquitin ligase lead to PNH associated with toe syndactyly, cleft palate and neurodevelopmental delay. Cellular and expression data showed sensitivity of PNH-associated mutants to proteasome degradation. Moreover, an in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while PNH-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these data provide insights into the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. 1.

    , & Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

  2. 2.

    & Cortical development: view from neurological mutants two decades later. Neuron 14, 1101–1104 (1995).

  3. 3.

    , , , & A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135, 1348–1369 (2012).

  4. 4.

    et al. Human disorders of cortical development: from past to present. Eur. J. Neurosci. 23, 877–893 (2006).

  5. 5.

    & Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 13, 710–726 (2014).

  6. 6.

    et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

  7. 7.

    et al. Periventricular heterotopia: phenotypic heterogeneity and correlation with filamin A mutations. Brain 129, 1892–1906 (2006).

  8. 8.

    et al. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum. Mol. Genet. 18, 497–516 (2009).

  9. 9.

    et al. A glial origin for periventricular nodular heterotopia caused by impaired expression of filamin-A. Hum. Mol. Genet. 21, 1004–1017 (2012).

  10. 10.

    et al. Filamin A regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation. J. Neurosci. 32, 7672–7684 (2012).

  11. 11.

    et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat. Genet. 36, 69–76 (2004).

  12. 12.

    et al. Periventricular heterotopia in 6q terminal deletion syndrome: role of the C6orf70 gene. Brain 136, 3378–3394 (2013).

  13. 13.

    et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat. Genet. 45, 639–647 (2013).

  14. 14.

    et al. Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study. Lancet Neurol. 14, 1182–1195 (2015).

  15. 15.

    , & Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun. 185, 1155–1161 (1992).

  16. 16.

    , , , & Characterization of a novel protein-binding module—the WW domain. FEBS Lett. 369, 67–71 (1995).

  17. 17.

    & C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998).

  18. 18.

    et al. Structure of an E6AP–UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science 286, 1321–1326 (1999).

  19. 19.

    , & NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene 557, 1–10 (2015).

  20. 20.

    , , , & A human polymorphism affects NEDD4L subcellular targeting by leading to two isoforms that contain or lack a C2 domain. BMC Cell Biol. 10, 26 (2009).

  21. 21.

    et al. Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN–mTORC1 signaling to promote neurite growth. Proc. Natl. Acad. Sci. USA 111, 13205–13210 (2014).

  22. 22.

    , , , & Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69, 482–497 (2011).

  23. 23.

    , & Impaired neuronal positioning and dendritogenesis in the neocortex after cell-autonomous Dab1 suppression. J. Neurosci. 26, 1767–1775 (2006).

  24. 24.

    , , , & The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J. Neurosci. 31, 9426–9439 (2011).

  25. 25.

    et al. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron 76, 353–369 (2012).

  26. 26.

    , & Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

  27. 27.

    & NEDD4: the founding member of a family of ubiquitin–protein ligases. Gene 557, 113–122 (2015).

  28. 28.

    et al. Impaired reelin-Dab1 signaling contributes to neuronal migration deficits of tuberous sclerosis complex. Cell Rep. 12, 965–978 (2015).

  29. 29.

    et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Mol. Cell 36, 457–468 (2009).

  30. 30.

    et al. PI3K/mTORC2 regulates TGF-β/activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat. Commun. 6, 7212 (2015).

  31. 31.

    et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130, 651–662 (2007).

  32. 32.

    et al. Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem. J. 415, 155–163 (2008).

  33. 33.

    et al. Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain–mediated auto-inhibition. J. Biol. Chem. 285, 12279–12288 (2010).

  34. 34.

    et al. Structural basis of the activation and degradation mechanisms of the E3 ubiquitin ligase Nedd4L. Structure 22, 1446–1457 (2014).

  35. 35.

    & Proper level of cytosolic disabled-1, which is regulated by dual nuclear translocation pathways, is important for cortical neuronal migration. Cereb. Cortex 26, 3219–3236 (2016).

  36. 36.

    et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).

  37. 37.

    et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138, 1613–1628 (2015).

  38. 38.

    et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385, 1305–1314 (2015).

  39. 39.

    , , & Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621 (1997).

  40. 40.

    et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat. Neurosci. 17, 923–933 (2014).

Download references

Acknowledgements

We are grateful to the patients and their families for their participation. We thank D. Rotin and C. Jiang (The Hospital for Sick Children) for kindly providing humanV5-tagged Nedd4-2 constructs (pcDNA3.1-nV5 wild type, CS and Y971A constructs) and L. Lindner, M. Ruff, M. Macias and F. Francis for their thoughtful comments and help. We thank investigators from the Epi4K Consortium and the Epilepsy Phenome/Genome Project for contributing NEDD4L-related genotype and phenotype data. This work was supported by funding from Strasbourg University and grant ANR-10-LABX-0030-INRT, a French State Fund managed by the Agence Nationale de la Recherche under the frame program Investissements d'Avenir ANR-10-IDEX-0002-02, the Fondation pour la Recherche Médicale (FRM funding within the framework of the program Equipe FRM; J.C–DEQ20130326477), the Fondation Maladies Rares, the Fondation NRJ–Institut de France, Agence National de Recherche (ANR Blanc 1103 01, project R11039KK; ANR E-Rare-012-01, project E10107KP; ANR-13-BSV-0009-01) and European Union FP7 project GENECODYS (grant 241995) and DESIRE (grant agreement 602531), and funding provided from the National Institute of Neurological Disorders and Stroke to the Epi4k Consortium and the Epilepsy Phenome/Genome Project (NS053998, NS077364, NS077274, NS077303 and NS077276). This study was also supported in part by the NIHR Biomedical Research Centre Oxford with funding from the UK Department of Health's NIHR Biomedical Research Centre funding scheme. The views expressed in this publication are those of the authors and not necessarily those of the UK Department of Health.

Author information

Author notes

    • Loïc Broix
    •  & Hélène Jagline

    These authors contributed equally to this work.

Affiliations

  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.

    • Loïc Broix
    • , Hélène Jagline
    • , Ekaterina L Ivanova
    • , Stéphane Schmucker
    • , Nathalie Drouot
    • , Peggy Tilly
    • , Tristan Stemmelen
    • , Gabrielle Rudolf
    • , Juliette Godin
    • , Izabela Sumara
    • , Maria-Victoria Hinckelmann
    •  & Jamel Chelly
  2. CNRS U7104, Illkirch, France.

    • Loïc Broix
    • , Hélène Jagline
    • , Ekaterina L Ivanova
    • , Stéphane Schmucker
    • , Nathalie Drouot
    • , Peggy Tilly
    • , Tristan Stemmelen
    • , Gabrielle Rudolf
    • , Juliette Godin
    • , Izabela Sumara
    • , Maria-Victoria Hinckelmann
    •  & Jamel Chelly
  3. INSERM U964, Illkirch, France.

    • Loïc Broix
    • , Hélène Jagline
    • , Ekaterina L Ivanova
    • , Stéphane Schmucker
    • , Nathalie Drouot
    • , Peggy Tilly
    • , Tristan Stemmelen
    • , Gabrielle Rudolf
    • , Juliette Godin
    • , Izabela Sumara
    • , Maria-Victoria Hinckelmann
    •  & Jamel Chelly
  4. Université de Strasbourg, Illkirch, France.

    • Loïc Broix
    • , Hélène Jagline
    • , Ekaterina L Ivanova
    • , Stéphane Schmucker
    • , Nathalie Drouot
    • , Peggy Tilly
    • , Tristan Stemmelen
    • , Gabrielle Rudolf
    • , Juliette Godin
    • , Izabela Sumara
    • , Maria-Victoria Hinckelmann
    •  & Jamel Chelly
  5. Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris, France.

    • Loïc Broix
    • , Karine Poirier
    • , Yoann Saillour
    • , Nicolas Lebrun
    • , Giuseppe Muraca
    • , Benjamin Saintpierre
    •  & Adrienne Elmorjani
  6. Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, UK.

    • Jill Clayton-Smith
    •  & Kay A Metcalfe
  7. NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.

    • Alistair T Pagnamenta
    •  & Jenny C Taylor
  8. Service de Génétique Médicale, University Hospital of Nantes, Nantes, France.

    • Bertrand Isidor
  9. Unité de Neuropédiatrie et d'Epileptologie Infantile, University Hospital of Montpellier, Montpellier, France.

    • Ulrike Walther Louvier
  10. Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.

    • Annapurna Poduri
  11. Grappe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, University of Liège, Liège, Belgium.

    • Martin Moïse
    •  & Laurent Nguyen
  12. Hôpital Maison Blanche, University Hospital of Reims, Reims, France.

    • Nathalie Bednarek Weirauch
  13. Paediatric Neurology Unit, A. Meyer Children's Hospital, University of Florence, Florence, Italy.

    • Renzo Guerrini
  14. Centre National de Génotypage, Institut de Génomique, CEA, Evry, France.

    • Anne Boland
    • , Robert Olaso
    •  & Jean-François Deleuze
  15. Institut Imagine, Bioinformatics Platform, Paris Descartes University, Paris, France.

    • Cecile Masson
    •  & Patrick Nischké
  16. Institute of Molecular Pathology, Vienna, Austria.

    • Ratna Tripathy
    •  & David Keays
  17. Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, Paris, France.

    • Cherif Beldjord
  18. Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK.

    • Usha Kini
  19. Institut Imagine, INSERM U1163, Paris Descartes University, Hôpital Necker–Enfants Malades, Paris, France.

    • Nadia Bahi-Buisson
  20. Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.

    • Jamel Chelly

Consortia

  1. Deciphering Developmental Disorders study

    A list of members and affiliations appears at http://dx.doi.org/10.1101/049056.

Authors

  1. Search for Loïc Broix in:

  2. Search for Hélène Jagline in:

  3. Search for Ekaterina L Ivanova in:

  4. Search for Stéphane Schmucker in:

  5. Search for Nathalie Drouot in:

  6. Search for Jill Clayton-Smith in:

  7. Search for Alistair T Pagnamenta in:

  8. Search for Kay A Metcalfe in:

  9. Search for Bertrand Isidor in:

  10. Search for Ulrike Walther Louvier in:

  11. Search for Annapurna Poduri in:

  12. Search for Jenny C Taylor in:

  13. Search for Peggy Tilly in:

  14. Search for Karine Poirier in:

  15. Search for Yoann Saillour in:

  16. Search for Nicolas Lebrun in:

  17. Search for Tristan Stemmelen in:

  18. Search for Gabrielle Rudolf in:

  19. Search for Giuseppe Muraca in:

  20. Search for Benjamin Saintpierre in:

  21. Search for Adrienne Elmorjani in:

  22. Search for Martin Moïse in:

  23. Search for Nathalie Bednarek Weirauch in:

  24. Search for Renzo Guerrini in:

  25. Search for Anne Boland in:

  26. Search for Robert Olaso in:

  27. Search for Cecile Masson in:

  28. Search for Ratna Tripathy in:

  29. Search for David Keays in:

  30. Search for Cherif Beldjord in:

  31. Search for Laurent Nguyen in:

  32. Search for Juliette Godin in:

  33. Search for Usha Kini in:

  34. Search for Patrick Nischké in:

  35. Search for Jean-François Deleuze in:

  36. Search for Nadia Bahi-Buisson in:

  37. Search for Izabela Sumara in:

  38. Search for Maria-Victoria Hinckelmann in:

  39. Search for Jamel Chelly in:

Contributions

L.B., H.J., E.L.I. and M.-V.H. conceived and designed the experiments, performed the experiments, performed statistical analysis and analyzed the data related to cellular, IUEP and functional studies. S.S. provided technical assistance and performed ubiquitination experiments. N.D. provided technical assistance, performed expression and genetic studies, and prepared reagents. J.C.-S., K.A.M., B.I., U.W.L., A.P., N.B.W., R.G., D.K., C.B., the DDD study, U.K. and N.B.-B. contributed clinical and imaging data and follow-up of patients and families. P.T. and G.M. provided assistance for IUEP studies. A.T.P., J.C.T., K.P., Y.S., N.L., G.R., B.S., A.E. and R.T. contributed to genetic studies and analysis of variants in candidate genes and screened DNA from subjects. M.M. and J.G. performed expression studies during brain development. L.N. and J.G. contributed reagents and material, as well as critical suggestions for functional studies. T.S., the DDD study, A.B., R.O., C.M., P.N. and J.-F.D. contributed to the generation of whole-exome sequencing, bioinformatics tools and analysis of sequencing data. I.S. conceived and designed ubiquitination experiments. J.C. conceived, coordinated and supervised the study, designed experiments, analyzed data and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jamel Chelly.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–12, Supplementary Table 1 and Supplementary Note.

Excel files

  1. 1.

    Supplementary Table 2

    Statistical analysis details.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.3676

Further reading