Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry

Abstract

SNPs associated with disease susceptibility often reside in enhancer clusters, or super-enhancers. Constituents of these enhancer clusters cooperate to regulate target genes and often extend beyond the linkage disequilibrium (LD) blocks containing risk SNPs identified in genome-wide association studies (GWAS). We identified 'outside variants', defined as SNPs in weak LD with GWAS risk SNPs that physically interact with risk SNPs as part of a target gene's regulatory circuitry. These outside variants further explain variation in target gene expression beyond that explained by GWAS-associated SNPs. Additionally, the clinical risk associated with GWAS SNPs is considerably modified by the genotype of outside variants. Collectively, these findings suggest a potential model in which outside variants and GWAS SNPs that physically interact in 3D chromatin collude to influence target transcript levels as well as clinical risk. This model offers an additional hypothesis for the source of missing heritability for complex traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The regulatory circuitry of GWAS loci frequently extends beyond the boundaries of haplotype blocks.
Figure 2: Physical interactions between outside variants and GWAS-associated SNPs influence target gene expression.
Figure 3: Functional outside variants share signature features of enhancer elements.
Figure 4: Outside variants alter clinical risk.

Similar content being viewed by others

References

  1. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    CAS  PubMed  Google Scholar 

  4. Akhtar-Zaidi, B. et al. Epigenomic enhancer profiling defines a signature of colon cancer. Science 336, 736–739 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Corradin, O. et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 24, 1–13 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Farh, K.K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–543 (2015).

    CAS  PubMed  Google Scholar 

  7. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  10. Parker, S.C. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. USA 110, 17921–17926 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Biancolella, M. et al. Identification and characterization of functional risk variants for colorectal cancer mapping to chromosome 11q23.1. Hum. Mol. Genet. 23, 2198–2209 (2014).

    CAS  PubMed  Google Scholar 

  13. Fortini, B.K. et al. Multiple functional risk variants in a SMAD7 enhancer implicate a colorectal cancer risk haplotype. PLoS One 9, e111914 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Glubb, D.M. et al. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. Am. J. Hum. Genet. 96, 5–20 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, C. et al. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun. 6, 6069 (2015).

    CAS  PubMed  Google Scholar 

  16. He, H. et al. Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc. Natl. Acad. Sci. USA 112, 6128–6133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roman, T.S. et al. Multiple hepatic regulatory variants at the GALNT2 GWAS locus associated with high-density lipoprotein cholesterol. Am. J. Hum. Genet. 97, 801–815 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaw, A.D. et al. Characterisation of genetic variation in ST8SIA2 and its interaction region in NCAM1 in patients with bipolar disorder. PLoS One 9, e92556 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Albert, F.W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

    CAS  PubMed  Google Scholar 

  20. Edwards, S.L., Beesley, J., French, J.D. & Dunning, A.M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93, 779–797 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nicolae, D.L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wright, F.A. et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 46, 430–437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bryois, J. et al. Cis and trans effects of human genomic variants on gene expression. PLoS Genet. 10, e1004461 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Ing-Simmons, E. et al. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res. 25, 504–513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dowen, J.M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lam, D.D. et al. Partially redundant enhancers cooperatively maintain mammalian Pomc expression above a critical functional threshold. PLoS Genet. 11, e1004935 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Bothma, J.P. et al. Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. eLife 4, e07956 (2015).

    PubMed Central  Google Scholar 

  29. Perry, M.W., Boettiger, A.N. & Levine, M. Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 108, 13570–13575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wiersma, E.J., Ronai, D., Berru, M., Tsui, F.W. & Shulman, M.J. Role of the intronic elements in the endogenous immunoglobulin heavy chain locus. Either the matrix attachment regions or the core enhancer is sufficient to maintain expression. J. Biol. Chem. 274, 4858–4862 (1999).

    CAS  PubMed  Google Scholar 

  31. Jeong, Y., El-Jaick, K., Roessler, E., Muenke, M. & Epstein, D.J. A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 133, 761–772 (2006).

    CAS  PubMed  Google Scholar 

  32. Montavon, T. et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 147, 1132–1145 (2011).

    CAS  PubMed  Google Scholar 

  33. Perry, M.W., Boettiger, A.N., Bothma, J.P. & Levine, M. Shadow enhancers foster robustness of Drosophila gastrulation. Curr. Biol. 20, 1562–1567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mócsai, A., Ruland, J. & Tybulewicz, V.L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Stranger, B.E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    PubMed  PubMed Central  Google Scholar 

  37. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 750–752 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kilpinen, H. et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342, 744–747 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Degner, J.F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, J. et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Puig-Kröger, A. & Corbí, A. RUNX3: a new player in myeloid gene expression and immune response. J. Cell. Biochem. 98, 744–756 (2006).

    PubMed  Google Scholar 

  43. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    CAS  PubMed  Google Scholar 

  44. Carotta, S., Wu, L. & Nutt, S.L. Surprising new roles for PU.1 in the adaptive immune response. Immunol. Rev. 238, 63–75 (2010).

    CAS  PubMed  Google Scholar 

  45. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Barrett, J.C. et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41, 1330–1334 (2009).

    CAS  PubMed  Google Scholar 

  47. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  48. Plenge, R.M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fortune, M.D. et al. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat. Genet. 47, 839–846 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gusev, A. et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 9, e1003993 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Hemani, G. et al. Detection and replication of epistasis influencing transcription in humans. Nature 508, 249–253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wood, A.R. et al. Another explanation for apparent epistasis. Nature 514, E3–E5 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zaitlen, N. & Eskin, E. Imputation aware meta-analysis of genome-wide association studies. Genet. Epidemiol. 34, 537–542 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    CAS  PubMed  Google Scholar 

  56. Guenther, C.A., Tasic, B., Luo, L., Bedell, M.A. & Kingsley, D.M. A molecular basis for classic blond hair color in Europeans. Nat. Genet. 46, 748–752 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cowper-Sal·lari, R. et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat. Genet. 44, 1191–1198 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Alcina, A. et al. Identification of a functional variant in the KIF5ACYP27B1METTL1FAM119B locus associated with multiple sclerosis. J. Med. Genet. 50, 25–33 (2013).

    CAS  PubMed  Google Scholar 

  59. Gaulton, K.J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Spieler, D. et al. Restless legs syndrome–associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 24, 592–603 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stadhouders, R. et al. HBS1LMYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J. Clin. Invest. 124, 1699–1710 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Selvaraj, S., R Dixon, J., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31, 1111–1118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  67. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).

    Google Scholar 

  69. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Tesar, T. LaFramboise, A. Lager and J. Morrow for helpful comments and discussion. This research was supported by NIH grants R01CA160356, R01CA143237, 1R01CA193677 and P50CA150964 (P.C.S.) and T32GM008056 (O.C.).

Author information

Authors and Affiliations

Authors

Contributions

O.C. and P.C.S. designed the study, performed the analyses and interpreted the results. A.J.C. and F.R.S. aided statistical analyses and discussion. O.C., J.M.L. and I.M.B. performed cell culture and luciferase experiments.

Corresponding author

Correspondence to Peter C Scacheri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Prevalence of outside variants.

(a) Schematic depicting the outside variant model. Gray represents enhancers that regulate a common gene (blue arrow). SNPs in LD within a GWAS-associated locus are defined as ‘linked variants’ (blue). Additional variants located in putative enhancer elements that regulate the same gene but are not in LD with the linked SNPs are defined as ‘outside variants’ (green). (b,c) The proportion of GWAS loci that contain outside variants is defined by each D′ (b) and r2 (c) threshold.

Supplementary Figure 2 Definition of outside variants used in transcriptome analysis.

(a) Methodology used to define the outside variants that were evaluated in transcriptome analysis. (b) Number of lead SNPs, gene associations, outside variants and GWAS SNP–outside variant pairs that resulted from the methodology described in a. (be) For all outside variant–GWAS SNP pairs evaluated in Figure 2, the distribution of r2 (c), D′ (d) and LOD (e) is shown. (f) The minor allele frequency of each outside variant in the 373-individual panel used for transcriptome analysis. (g) Proportion of GWAS loci (total n = 186) that harbor outside variants determined to alter the impact of the GWAS allele on target transcript levels for multiple methods of multiple-test correction.

Supplementary Figure 3 Functional outside variants as compared to published eQTL results.

Proportion of outside variants that have previously been reported as eQTLs (red).

Supplementary Figure 4 Outside variant loci evaluated in luciferase reporter assays.

Sanger sequencing of outside variant genotype for the reporter constructs used in Figure 3g.

Supplementary Figure 5 Heritability explained by local controls as compared to outside variants.

Heritability estimates for ulcerative colitis (left) and multiple sclerosis (right) as compared to 1,000 sets of randomly selected local control variants, variants within 200 kb of a GWAS SNP that do not lie in the regulatory circuitry of the gene target (gray box plot, 5th- to 95th-percentile whiskers; two-sample z test: UC, P = 0.004; MS, P < 0.001).

Supplementary Figure 6 Evaluation of potential third variants for genes with functional outside variants (FDR q < 0.05).

Analytical design and results of the impact of ‘third’ variants on gene expression and clinical risk for all genes with functional outside variants defined at FDR q < 0.05. Dot plots provide examples of outside variant and GWAS alleles that explain additional variation in gene expression.

Supplementary Figure 7 Evaluation of potential third variants for genes with functional variants (FDR q < 0.1 or permutation P < 0.01).

Same as Supplementary Figure 6 for all genes with functional outside variants.

Supplementary Figure 8 Chromatin state of potential third variants.

Comparison of third SNPs that potentially explain the effect of outside variants on expression (see third arrow in Supplementary Fig. 7) to chromatin state. Proportion of these third SNPs that is significantly enriched for markers of regulatory function (H3K4me1, H3K27ac and DNase hypersensitivity) in B lymphoblasts (GM12878).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3. (PDF 6186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corradin, O., Cohen, A., Luppino, J. et al. Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry. Nat Genet 48, 1313–1320 (2016). https://doi.org/10.1038/ng.3674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing