Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies

Abstract

Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Functional assessment of the RPGRIP1L A229T variant in vivo.
Figure 2: RPGRIP1L interacts with RPGR and variant A229T abrogates this interaction.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Badano, J.L., Mitsuma, N., Beales, P.L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).

    Article  CAS  Google Scholar 

  2. Bergmann, C. et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am. J. Hum. Genet. 82, 959–970 (2008).

    Article  CAS  Google Scholar 

  3. Olbrich, H. et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat. Genet. 34, 455–459 (2003).

    Article  CAS  Google Scholar 

  4. Chang, B. et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15, 1847–1857 (2006).

    Article  CAS  Google Scholar 

  5. den Hollander, A.I. et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am. J. Hum. Genet. 79, 556–561 (2006).

    Article  CAS  Google Scholar 

  6. Baala, L. et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am. J. Hum. Genet. 81, 170–179 (2007).

    Article  CAS  Google Scholar 

  7. Leitch, C.C. et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat. Genet. 40, 443–448 (2008).

    Article  CAS  Google Scholar 

  8. Sayer, J.A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674–681 (2006).

    Article  CAS  Google Scholar 

  9. Valente, E.M. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38, 623–625 (2006).

    Article  CAS  Google Scholar 

  10. Badano, J.L. et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 439, 326–330 (2006).

    Article  CAS  Google Scholar 

  11. Tory, K. et al. High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J. Am. Soc. Nephrol. 18, 1566–1575 (2007).

    Article  CAS  Google Scholar 

  12. Gherman, A., Davis, E.E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  Google Scholar 

  13. Liu, Q. et al. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteomics 6, 1299–1317 (2007).

    Article  CAS  Google Scholar 

  14. Arts, H.H. et al. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat. Genet. 39, 882–888 (2007).

    Article  CAS  Google Scholar 

  15. Delous, M. et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875–881 (2007).

    Article  CAS  Google Scholar 

  16. Gerdes, J.M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    Article  CAS  Google Scholar 

  17. Ross, A.J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    Article  CAS  Google Scholar 

  18. Corbit, K.C. et al. Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70–76 (2008).

    Article  CAS  Google Scholar 

  19. Beales, P.L. et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat. Genet. 39, 727–729 (2007).

    Article  CAS  Google Scholar 

  20. Otto, E.A. et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat. Genet. 37, 282–288 (2005).

    Article  CAS  Google Scholar 

  21. Shu, X. et al. RPGR mutation analysis and disease: an update. Hum. Mutat. 28, 322–328 (2007).

    Article  CAS  Google Scholar 

  22. Breuer, D.K. et al. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am. J. Hum. Genet. 70, 1545–1554 (2002).

    Article  CAS  Google Scholar 

  23. Hong, D.H. et al. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest. Ophthalmol. Vis. Sci. 44, 2413–2421 (2003).

    Article  Google Scholar 

  24. Khanna, H. et al. RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J. Biol. Chem. 280, 33580–33587 (2005).

    Article  CAS  Google Scholar 

  25. Oprea, G.E. et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320, 524–527 (2008).

    Article  CAS  Google Scholar 

  26. Giess, R. et al. Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. Am. J. Hum. Genet. 70, 1277–1286 (2002).

    Article  CAS  Google Scholar 

  27. Badano, J.L. & Katsanis, N. Beyond Mendel: an evolving view of human genetic disease transmission. Nat. Rev. Genet. 3, 779–789 (2002).

    Article  CAS  Google Scholar 

  28. Dryja, T.P. et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am. J. Hum. Genet. 68, 1295–1298 (2001).

    Article  CAS  Google Scholar 

  29. Cheng, H. et al. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum. Mol. Genet. 13, 1563–1575 (2004).

    Article  CAS  Google Scholar 

  30. He, S. et al. Retinitis pigmentosa GTPase regulator (RPGR) protein isoforms in mammalian retina: insights into X-linked retinitis pigmentosa and associated ciliopathies. Vision Res. 48, 366–376 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the individuals affected with ciliopathies and their families for their continued support and encouragement. We also thank H. Arts for critical evaluation of the manuscript. This work was supported by grants R01EY007961 from the National Eye Institute (H.K. and A.S.), R01HD04260 from the National Institute of Child Health and Development (N.K.), R01DK072301, R01DK075972 (N.K.), R01DK068306, R01DK064614, R01DK069274 (F.H.), NRSA fellowship F32 DK079541 (E.E.D.) from the National Institute of Diabetes, Digestive and Kidney disorders, Intramural program of NEI (A.S.), the Macular Vision Research Foundation (N.K.), the Foundation for Fighting Blindness (H.K., S.S.B., A.S. and N.K.), the Foundation for Fighting Blindness Canada (R.K.K.), Le Fonds de la recherche en sante du Québec (FRSQ) (R.K.K.), Research to Prevent Blindness (A.S.), Harold Falls Collegiate Professorship (A.S.), the Midwest Eye Banks and Transplantation Center (H.K.), the Searle Scholars Program (M.A.B.), the Deutsche Forschungsgemeinschaft (DFG grant BE 3910/4-1; C.B.) the UK Medical Research Council (grant number G0700073; C.A.J.), NIHR Biomedical Research Centre for Ophthalmology (S.S.B.) and EU-GENORET Grant LSHG-CT-2005-512036 (S.S.B.). F.H. is an investigator of the Howard Hughes Medical Institute (HHMI) and a Doris Duke Distinguished Clinical Scientist (DDCF).

Author information

Authors and Affiliations

Authors

Contributions

H.K., E.E.D., A.S. and N.K. designed experiments and analyzed data; H.K., E.E.D., C.A.M.-Z., A.E.-C., I.L., A.I.d.H., M.N.Z., M.I.O., N.W., C.F.C., C.M., A.D.-F., C.V.L. and P.L.T. performed experiments; M.A.B. performed permutation analysis; C.F.I., R.A.L., S.G.J., C.B., P.L.B., T.A.-B., C.A.J., E.A.O., S.S.B., F.H. and R.K.K. provided subject DNA, genotypes, or clinical information; D.M.M., D.A.W., M.M., L.R.L. and R.A.G. generated and analyzed medical resequencing data; H.K., E.E.D., A.S. and N.K. wrote the manuscript.

Corresponding authors

Correspondence to Anand Swaroop or Nicholas Katsanis.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–5 (PDF 1817 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khanna, H., Davis, E., Murga-Zamalloa, C. et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet 41, 739–745 (2009). https://doi.org/10.1038/ng.366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing