Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension


High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used 155,063 samples for independent replication. We identified 30 new blood pressure– or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Study design and workflow diagram for single-variant discovery analyses.
Figure 2: Overlap of the 30 new blood pressure–associated loci across SBP, DBP, PP and HTN.
Figure 3: Study design for conditional analyses and rare variant gene-based discovery analyses.
Figure 4: Locus plot for A2ML1 and secondary amino acid structure of the gene product.


  1. 1

    Lim, S.S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  Google Scholar 

  2. 2

    Rapsomaniki, E. et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383, 1899–1911 (2014).

    Article  Google Scholar 

  3. 3

    Munroe, P.B., Barnes, M.R. & Caulfield, M.J. Advances in blood pressure genomics. Circ. Res. 112, 1365–1379 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Ehret, G.B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Wain, L.V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Johnson, T. et al. Blood pressure loci identified with a gene-centric array. Am. J. Hum. Genet. 89, 688–700 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Tomaszewski, M. et al. Genetic architecture of ambulatory blood pressure in the general population: insights from cardiovascular gene-centric array. Hypertension 56, 1069–1076 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Tragante, V. et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am. J. Hum. Genet. 94, 349–360 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Ganesh, S.K. et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 22, 1663–1678 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Simino, J. et al. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am. J. Hum. Genet. 95, 24–38 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Zhu, X. et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am. J. Hum. Genet. 96, 21–36 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Salfati, E., Morrison, A.C., Boerwinkle, E. & Chakravarti, A. Direct Estimates of the Genomic Contributions to Blood Pressure Heritability within a Population-Based Cohort (ARIC). PLoS One 10, e0133031 (2015).

    Article  Google Scholar 

  13. 13

    Schork, N.J., Murray, S.S., Frazer, K.A. & Topol, E.J. Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. 19, 212–219 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. (2016).

  16. 16

    Liu, D.J. et al. Meta-analysis of gene-level tests for rare variant association. Nat. Genet. 46, 200–204 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Wu, M.C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Li, B. & Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Vissers, L.E. et al. Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome. Eur. J. Hum. Genet. 23, 317–324 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339–344 (2011).

  21. 21

    Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Arking, D.E. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 46, 826–836 (2014).

    CAS  Article  Google Scholar 

  23. 23

    den Hoed, M. et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Traylor, M. et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 11, 951–962 (2012).

    Article  Google Scholar 

  26. 26

    Smith, N.L. et al. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 3, 256–266 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Vasan, R.S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. J. Am. Med. Assoc. 302, 168–178 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Russo, S.B. et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Invest. 122, 3919–3930 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Oudot-Mellakh, T. et al. Genome wide association study for plasma levels of natural anticoagulant inhibitors and protein C anticoagulant pathway: the MARTHA project. Br. J. Haematol. 157, 230–239 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Smith, N.L. et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 121, 1382–1392 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Bleil, M.E., Gregorich, S.E., McConnell, D., Rosen, M.P. & Cedars, M.I. Does accelerated reproductive aging underlie premenopausal risk for cardiovascular disease? Menopause 20, 1139–1146 (2013).

    Article  Google Scholar 

  32. 32

    Guan, R. et al. rbm47, a novel RNA binding protein, regulates zebrafish head development. Dev. Dyn. 242, 1395–1404 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Wozniak, M.A., Kwong, L., Chodniewicz, D., Klemke, R.L. & Keely, P.J. R-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol. Biol. Cell 16, 84–96 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Tuckwell, D. Identification and analysis of collagen alpha 1(XXI), a novel member of the FACIT collagen family. Matrix Biol. 21, 63–66 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat. Commun. 6, 8111 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Segrè, A.V., Groop, L., Mootha, V.K., Daly, M.J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).

    Article  Google Scholar 

  37. 37

    Huan, T. et al. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol. Syst. Biol. 11, 799 (2015).

    Article  Google Scholar 

  38. 38

    Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    CAS  Article  Google Scholar 

  39. 39

    Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Park, H.W. et al. Serine-threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proc. Natl. Acad. Sci. USA 108, 10750–10755 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  Google Scholar 

  42. 42

    Te Riet, L., van Esch, J.H., Roks, A.J., van den Meiracker, A.H. & Danser, A.H. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res. 116, 960–975 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Gao, J. et al. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin. Sci. (Lond.) 127, 135–148 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Tobin, M.D., Sheehan, N.A., Scurrah, K.J. & Burton, P.R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).

    Article  Google Scholar 

  45. 45

    Mahajan, A. et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 11, e1004876 (2015).

    Article  Google Scholar 

  46. 46

    Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Burgess, S. & Thompson, S.G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181, 251–260 (2015).

    Article  Google Scholar 

  48. 48

    Thompson, S.G. & Sharp, S.J. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat. Med. 18, 2693–2708 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Nica, A.C. et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 7, e1002003 (2011).

    CAS  Article  Google Scholar 

  50. 50

    GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  51. 51

    Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  Google Scholar 

Download references


Full acknowledgments appear in the Supplementary Note.

Author information





Supervision and management of the project: J.M.H.H. and P.B.M. The following authors contributed to the drafting of the manuscript: J.M.M.H., P.B.M. P. Surendran, H.W., A.S.B., F.D., J.P.C., D.R.B., K.W., M. Tomaszewski, F.W.A., L.V.W., N.J.S., J.D., A.K.M., H.Y., C.M.L., N.G., X.S., T. Tukiainen, D.F.F., O.G., T.F. and V.T. All authors critically reviewed and approved the final version of the manuscript. Statistical analysis review: J.M.M.H., P. Surendran, F.D., H.W., J.P.C., R.Y., N.M., P.B.M., L.V.W., H.Y., T.F., E. Mihailov, A.D.M., A. Mahajan, A. Moayyeri, E.E., A.S.B., F.W.A., M.J.C., C.F., T.F., S.E.H., A.S.H., J.E.H., J.L., G.M., J.M., N.M., A.P.M., A. Poveda, N.J.S., R.A.S., L.S., K.E.S., M. Tomaszewski, V.T., T.V.V., N.V., K.W., A.M.Y., W. Zhang, N.G., C.M.L., A.K.M., X.S. and T. Tuomi. Central data quality control: J.M.M.H., A.S.B., P. Surendran, R.Y., F.D., H.W., J.P.C., T.F., L.V.W., P.B.M., E. Mihailov, N.M., C.M.L., N.G., X.S. and A.K.M. Central data analysis: J.M.M.H., P. Surendran, F.D., H.W., J.P.C., N.G., C.M.L., A.K.M. and X.S. Pathway analysis and literature review: J.M.M.H., D.R.B., P.B.M., M. Tomaszewski, K.W., V.T., O.G., A.T. and F.W.A. GWAS lookups, eQTL analysis, GRS analysis, variant annotation and enrichment analyses: J.M.M.H., A.S.B., D.R.B., J.R.S., D.F.F., F.D., M. Harakalova, P.B.M., F.W.A., T. Tuomi, C.M.L., A.K.M. and S. Burgess. Study investigators in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): D.S.A., P.A., E.D.A., D.A., A.S.B., R.C., J.D., J.F., I.F., P.F., J.W.J., F. Kee, A.S.M., S.F.N., B.G.N., D.S., N. Sattar, J.V., F.W.A., P.I.W.d.B., M.J.B., M.J.C., J.C.C., J.M.C., I.J.D., G.D., A.F.D., P.E., T.E., P.W.F., G.G., P.v.d.H., C.H., K.H., E.I., M.-R.J., F. Karpe, S.K., J.S.K., L. Lind, M.I.M., O.M., A. Metspalu, A.D.M., A.P.M., P.B.M., M.E.N., S.P., C.N.A.P., O. Polasek, D.J.P., S.R., O.R., I.R., V.S., N.J.S., P. Sever, T.D.S., J.M.S., N.J.W., C.J.W., E.Z., M.B., I.B., F.S.C., L.G., T.H., E.K.-H., P.J., J. Kuusisto, M.L., T.A.L., A.L., K.L.M., H.O., O. Pedersen, R.R., J.T., M.U. M.U.-N., A. Malarstig, D.F.R., M. Hoek, T.F.V. Study phenotyping in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): P.A., D.A., S. Blankenberg, M.C., J.F., J.W.J., F. Kee, K.K., S.F.N., B.G.N., C.J.P., A.R., M.S., N. Sattar, J.V., W. Zhao, R.A.d.B., M.J.B., M.J.C., J.C.C., J.M.C., A.F.D., A.S.F.D., L.A.D., T.E., A.-E.F., G.G., G.H., P.v.d.H., A.S.H., O.L.H., M. Hassinen, E.I., M.-R.J., F. Karpe, J.S.K., L. Lind, L. Lannfelt, G.M., A. Matchan, P.v.d.M., A. Metspalu, R. Mägi, M.J.N., M.E.N., O. Polasek, N.P., F.R., V.S., N.J.S., T.D.S., A.V.S., J.M.S., M. Tomaszewski, A.-C.V., N.V., N.J.W., T. Tuomi, C.C., L.L.H., A.T.K., P.K., J.L., S.M., E.R.B.P., A.S., T.S., H.M.S., B.T. Study data quality control and analysis in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): A.S.B., A.J.M.d.C., K.-H.H., J.M.M.H., A.K., J. Kontto, C. Langenberg, S.F.N., B.G.N., M.M.-N., S.P., M.P., P. Surendran, S.T., G.V., S.M.W., R.Y., F.W.A., J.P.C., F.D., A.-E.F., T.F., C.H., A. Matchan, A. Mahajan, A.P.M., P.B.M., C.N.A.P., N.W.R., F.R., N.J.S., M. Tomaszewski, V.T., H.W., H.Y., N.G., A.K.M., X.S. Exome chip data quality control in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): A.S.B., K.-H.H., J.M.M.H., A.K., C. Langenberg, S.F.N., B.G.N., P. Surendran, R.Y., F.W.A., P.I.W.d.B., A.I.F.B., J.C.C., J.P.C., P.D., L.A.D., F.D., E.E., C.F., T.F., S.E.H., P.v.d.H., S.S.-H., K.H., J.E.H., E.K., A. Mahajan, G.M., J.M., N.M., E. Mihailov, A. Moayyeri, A.P.M., P.B.M., C.P.N., M.J.N., C.N.A.P., A. Poveda, N.W.R., N.R.R., R.A.S., N. Soranzo, L.S., K.E.S., M.D.T., V.T., T.V.V., N.V., H.W., H.Y., A.M.Y., E.Z., W. Zhang, N.G., C.M.L., A.K.M., X.S. Exome chip data analysis in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): J.M.M.H., P. Surendran, R.Y., F.W.A., P.I.W.d.B., A.I.F.B., R.A.d.B., M.J.C., J.C.C., J.P.C., P.D., L.A.D., P.E., E.E., C.F., T.F., P.W.F., S.F., C.J.G., S.E.H., P.v.d.H., A.S.H., C.H., O.L.H., J.E.H., E.I., M.-R.J., F. Karpe, J.S.K., D.C.M.L., L. Lind, J.L., G.M., R. Marioni, J.M., N.M., M.I.M., P.v.d.M., O.M., C.M., E. Mihailov, A. Moayyeri, A.P.M., R. Mägi, P.B.M., C.P.N., M.J.N., T.O., A. Palotie, A. Poveda, N.W.R., N.R.R., N.J.S., R.A.S., N. Soranzo, L.S., T.D.S., K.E.S., M.D.T., E.T., V.T., T.V.V., N.V., L.V.W., N.J.W., H.W., H.Y., A.M.Y., E.Z., H.Z., W. Zhang, L.L.B., A.P.G., N.G., J.R.H., A.U.J., J.B.-J., C.M.L., A.K.M., N.N., X.S., A.S., A.J.S. GRS lookups: A.E.J., E. Marouli, H.S.M., H.L., H.M.H., J.F.F., M. Traylor, R.S.V., W.L. CHARGE EXOME-BP lookups: Study design. A.T.K., C. Liu, C.N.-C. Analysis. A.T.K., C. Liu.

Corresponding authors

Correspondence to Joanna M M Howson or Patricia B Munroe.

Ethics declarations

Competing interests

N.P. has received financial support from several pharmaceutical companies that manufacture either blood pressure -lowering or lipid-lowering agents, or both, and consultancy fees. S.K. has received research grants from Merck, Bayer and Aegerion, is on the SAB of Catabasis, Regeneron Genetics Center, Merck and Celera, has equity in San Therapeutics and Catabasis, and performs consulting for Novartis, Aegerion, Bristol Myers Squibb, Sanofi, AstraZeneca and Alnylam. P. Sever has received research awards from Pfizer. A. Malarstig and M.U.-N. are full-time employees of Pfizer. D.F.R. and M. Hoek are full-time employees of Merck. M.J.C. is Chief Scientist for Genomics England, a UK government company. The authors declare no other competing financial interests.

Additional information

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

A full list of members and affiliations appears in the Supplementary Note

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Note (PDF 19318 kb)

Supplementary Tables

Supplementary Tables 1–20 (XLSX 226 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Surendran, P., Drenos, F., Young, R. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48, 1151–1161 (2016).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing