Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Human mutation rate associated with DNA replication timing

Abstract

Eukaryotic DNA replication is highly stratified, with different genomic regions shown to replicate at characteristic times during S phase. Here we observe that mutation rate, as reflected in recent evolutionary divergence and human nucleotide diversity, is markedly increased in later-replicating regions of the human genome. All classes of substitutions are affected, suggesting a generalized mechanism involving replication time-dependent DNA damage. This correlation between mutation rate and regionally stratified replication timing may have substantial evolutionary implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication time-dependence of evolutionary divergence and human SNP density.

Similar content being viewed by others

References

  1. Wolfe, K.H., Sharp, P.M. & Li, W.H. Nature 337, 283–285 (1989).

    Article  CAS  Google Scholar 

  2. Hellmann, I. et al. Genome Res. 15, 1222–1231 (2005).

    Article  CAS  Google Scholar 

  3. Tyekucheva, S. et al. Genome Biol. 9, R76 (2008).

    Article  Google Scholar 

  4. Jeon, Y. et al. Proc. Natl. Acad. Sci. USA 102, 6419–6424 (2005).

    Article  CAS  Google Scholar 

  5. Woodfine, K. et al. Hum. Mol. Genet. 13, 191–202 (2004).

    Article  CAS  Google Scholar 

  6. Day, N., Hemmaplardh, A., Thurman, R.E., Stamatoyannopoulos, J.A. & Noble, W.S. Bioinformatics 23, 1424–1426 (2007).

    Article  CAS  Google Scholar 

  7. Karnani, N., Taylor, C., Malhotra, A. & Dutta, A. Genome Res. 17, 865–876 (2007).

    Article  CAS  Google Scholar 

  8. Wheeler, D.A. et al. Nature 452, 872–876 (2008).

    Article  CAS  Google Scholar 

  9. Karolchik, D. et al. Nucleic Acids Res. 36, D773–D779 (2008).

    Article  CAS  Google Scholar 

  10. Hanawalt, P.C. Science 266, 1957–1958 (1994).

    Article  CAS  Google Scholar 

  11. Mirkin, E.V. & Mirkin, S.M. Microbiol. Mol. Biol. Rev. 71, 13–35 (2007).

    Article  CAS  Google Scholar 

  12. Yang, Y., Sterling, J., Storici, F., Resnick, M.A. & Gordenin, D.A. PLoS Genet. 4, E1000264 (2008).

    Article  Google Scholar 

  13. Lindahl, T. Nature 362, 709–715 (1993).

    Article  CAS  Google Scholar 

  14. Watanabe, Y. et al. Hum. Mol. Genet. 11, 13–21 (2002).

    Article  CAS  Google Scholar 

  15. Chuang, J.H. & Li, H. PLoS Biol. 2, E29 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Kondrashov, M. Przeworski and J. Cameron for helpful discussions. This work was supported by US National Institutes of Health grants U54HG003042 and R01GM071852 to J.A.S.; R01GM078598, R01MH084676 and U54LM008748 to S.R.S. and R01GM60987 to S.M.M.

Author information

Authors and Affiliations

Authors

Contributions

J.A.S., S.R.S. and S.M.M. designed research and wrote the paper. I.A., G.V.K. and R.E.T. analyzed data.

Corresponding authors

Correspondence to John A Stamatoyannopoulos or Shamil R Sunyaev.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 2622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamatoyannopoulos, J., Adzhubei, I., Thurman, R. et al. Human mutation rate associated with DNA replication timing. Nat Genet 41, 393–395 (2009). https://doi.org/10.1038/ng.363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing