Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis

Abstract

Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Samples assessed.
Figure 2: Somatic genetic alterations in CAHs and primary and metastatic endometrial carcinomas.
Figure 3: Heterogeneity among somatic mutations.
Figure 4: Phylogenetic trees for tumors with more than one metastasis.

Similar content being viewed by others

References

  1. Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384, 755–765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 15, 10–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. The Cancer Genome Atlas Research Network. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

  4. Salvesen, H.B. et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc. Natl. Acad. Sci. USA 106, 4834–4839 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dutt, A. et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl. Acad. Sci. USA 105, 8713–8717 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salvesen, H.B., Haldorsen, I.S. & Trovik, J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 13, e353–e361 (2012).

    Article  PubMed  Google Scholar 

  7. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giannakis, M. et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lawrence, M.S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woodruff, J.D. & Pickar, J.H. The Menopause Study Group. Incidence of endometrial hyperplasia in postmenopausal women taking conjugated estrogens (Premarin) with medroxyprogesterone acetate or conjugated estrogens alone. Am. J. Obstet. Gynecol. 170, 1213–1223 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Veeraraghavan, J. et al. Recurrent ESR1-CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat. Commun. 5, 4577 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Cavaillès, V. et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14, 3741–3751 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rosell, M. et al. Complex formation and function of estrogen receptor α in transcription requires RIP140. Cancer Res. 74, 5469–5479 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robinson, D.R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamburov, A. et al. Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc. Natl. Acad. Sci. USA 112, E5486–E5495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang, M.T. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 155–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Novetsky, A.P. et al. Frequent mutations in the RPL22 gene and its clinical and functional implications. Gynecol. Oncol. 128, 470–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Hong, B., Le Gallo, M. & Bell, D.W. The mutational landscape of endometrial cancer. Curr. Opin. Genet. Dev. 30, 25–31 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren, Y. et al. JAK1 truncating mutations in gynecologic cancer define new role of cancer-associated protein tyrosine kinase aberrations. Sci. Rep. 3, 3042 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hayes, M.P. et al. PIK3CA and PTEN mutations in uterine endometrioid carcinoma and complex atypical hyperplasia. Clin. Cancer Res. 12, 5932–5935 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Brastianos, P.K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ganem, N.J., Godinho, S.A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zack, T.I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stachler, M.D. et al. Paired exome analysis of Barrett's esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright, J.D., Barrena Medel, N.I., Sehouli, J., Fujiwara, K. & Herzog, T.J. Contemporary management of endometrial cancer. Lancet 379, 1352–1360 (2012).

    Article  PubMed  Google Scholar 

  29. Mao, T.L. et al. Loss of ARID1A expression correlates with stages of tumor progression in uterine endometrioid carcinoma. Am. J. Surg. Pathol. 37, 1342–1348 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Landau, D.A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lohr, J.G. et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25, 91–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, S. et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc. Natl. Acad. Sci. USA 110, 2916–2921 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McFadden, D.G. et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghoussaini, M. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat. Genet. 44, 312–318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson, B.E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Abedalthagafi, M.S. et al. ARID1A and TERT promoter mutations in dedifferentiated meningioma. Cancer Genet. 208, 345–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Torres-Martín, M. et al. Whole exome sequencing in a case of sporadic multiple meningioma reveals shared NF2, FAM109B, and TPRXL mutations, together with unique SMARCB1 alterations in a subset of tumor nodules. Cancer Genet. 208, 327–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, R.S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bitler, B.G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Werner, H.M. et al. ARID1A loss is prevalent in endometrial hyperplasia with atypia and low-grade endometrioid carcinomas. Mod. Pathol. 26, 428–434 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Wiegand, K.C. et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J. Pathol. 224, 328–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, M.Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Valastyan, S. & Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berg, A. et al. Molecular profiling of endometrial carcinoma precursor, primary and metastatic lesions suggests different targets for treatment in obese compared to non-obese patients. Oncotarget 6, 1327–1339 (2015).

    Article  PubMed  Google Scholar 

  49. Wik, E. et al. Endometrial Carcinoma Recurrence Score (ECARS) validates to identify aggressive disease and associates with markers of epithelial-mesenchymal transition and PI3K alterations. Gynecol. Oncol. 134, 599–606 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Saunders, C.T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 41, e67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, S., Degnan, J.H. & Steel, M. Clades, clans, and reciprocal monophyly under neutral evolutionary models. Theor. Popul. Biol. 79, 220–227 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this manuscript to Helga Birgitte Salvesen, who unexpectedly passed away before its publication. She was a tremendously generous and insightful colleague and a dear friend. We will all miss her dearly.

We thank E. Valen, B. Edvardsen, K. Madissoo, R. Kopperud and B. Nordanger for excellent technical assistance. This study was supported by the Research Council of Norway, the Norwegian Cancer Society, Helse Vest, the University of Bergen, the Bergen Research Foundation, the National Institutes of Health (award numbers T32GM007753, 5R01CA188228 and 1F30CA192725) and the Novartis Institutes for Biomedical Research.

Author information

Authors and Affiliations

Authors

Contributions

E.A.H. and H.B.S. initiated the study, and W.J.G., E.A.H., S.L.C., R.B. and H.B.S. designed the study. E.A.H., M.K.H., A.B., H.M.J.W., I.M.S., K.K.M., J.T., K.W., L.B. and H.B.S. performed sample collection, annotation and curation. W.J.G., E.A.H., A.T.-W., A.D.C., F.H., T.I.Z., K.M.S., K.K., J.A.W., M.S.L., S.L.C., R.B. and H.B.S. performed the data analyses. E.A.H., K.M.S. and C.K. performed validation and microsatellite instability and immunohistochemistry experiments. W.J.G., E.A.H., M.R., A.C., K.K.M., J.T., C.K., M.G., E.H., O.K.V., M.S.L., G.G., S.L.C., R.B. and H.B.S. contributed reagents and algorithms. All authors critically revised the manuscript.

Corresponding authors

Correspondence to Erling A Hoivik, Scott L Carter or Rameen Beroukhim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16. (PDF 47493 kb)

Supplementary Table 1

Clinical background data on patient cases. (XLSX 32 kb)

Supplementary Table 2

Validation of sequencing results. (XLSX 36 kb)

Supplementary Table 3

Significantly mutated genes. (XLSX 2234 kb)

Supplementary Table 4

Kaplan–Meier survival analysis. (XLSX 11 kb)

Supplementary Table 5

Gene mutation correlations. (XLSX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibson, W., Hoivik, E., Halle, M. et al. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet 48, 848–855 (2016). https://doi.org/10.1038/ng.3602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3602

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research