Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2

This article has been updated

Abstract

Here we show that the cytosine-5 methyltransferase DNMT2 controls retrotransposon silencing in Drosophila somatic cells. In Drosophila, significant DNMT2-dependent DNA methylation occurs during early embryogenesis. Suppression of white gene silencing by Mt2 (Dnmt2) null mutations in variegated P[w+] element insertions identified functional targets of DNMT2. The enzyme controls DNA methylation at retrotransposons in early embryos and initiates histone H4K20 trimethylation catalyzed by the SUV4-20 methyltransferase. In somatic cells, loss of DNMT2 eliminates H4K20 trimethylation at retrotransposons and impairs maintenance of retrotransposon silencing. In Dnmt2 and Suv4-20 null genotypes, retrotransposons are strongly overexpressed in somatic but not germline cells, where retrotransposon silencing depends on an RNAi mechanism. DNMT2 also controls integrity of chromosome 2R and 3R telomeres. In Dnmt2 null strains, we found stable loss of the subtelomeric clusters of defective Invader4 elements. Together, these results demonstrate a previously unappreciated role of DNA methylation in retrotransposon silencing and telomere integrity in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNMT2-mediated DNA methylation and the genetic control of gene silencing in Drosophila.
Figure 2: Invader4 retrotransposon LTRs are target sequences for DNMT2-mediated DNA methylation.
Figure 3: Association of DNMT2 with retrotransposon LTRs and ectopic expression of retrotransposons in Dnmt2 null cells.
Figure 4: SUV4-20–mediated H4K20me3 methylation maintains DNMT2-induced silencing of retrotransposons.
Figure 5: Loss of Dnmt2 leads to stable loss of 2R and 3R telomere-associated sequences.

Similar content being viewed by others

Change history

  • 27 October 2010

    In the version of this article initially published, the Methods didn't cite the source of the w1118 strain used as wild-type control. The authors used a newly established w1118 isogenic strain and the origin of the strain is described in reference 20. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–12 (2002).

    CAS  PubMed  Google Scholar 

  2. Tamaru, H. & Selker, E.U. A histone H3 methyltransferase controls DNA methylation in neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Meehan, R.R., Pennings, S. & Stancheva, I. Lashings of DNA methylation, forkfuls of chromatin remodeling. Genes Dev. 15, 3231–3236 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Yan, Q., Huang, J., Fan, T., Zhu, H. & Muegge, K. Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J. 22, 5154–5162 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3 and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Dong, A. et al. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29, 439–448 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Okano, M., Xie, S. & Li, E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res. 26, 2536–2540 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goll, M.G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Jurkowski, T.P. et al. Human DNMT2 methylates tRNAAsp molecules using a DNA methyltransferase-like catalytic mechanism. RNA 14, 1663–1670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tweedie, S. et al. Vestiges of a DNA methylation system in Drosophila melanogaster. Nat. Genet. 23, 389–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Hung, M.S. et al. Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc. Natl. Acad. Sci. USA 96, 11940–11945 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuhlmann, M. et al. Silencing of retrotransposons in Dictyostelium by DNA methylation and RNAi. Nucleic Acids Res. 33, 6405–6417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ehrlich, M. & Wang, R.Y.-H. 5-methylcytosine in eukaryotic DNA. Science 212, 1350–1357 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Gowher, H., Leismann, O. & Jeltsch, A. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J. 19, 6918–6923 (2003).

    Article  Google Scholar 

  17. Lyko, F., Ramsahoye, B.H. & Jaenisch, R. DNA methylation in Drosophila melanogaster. Nature 408, 538–540 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, L.-Y. The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. J. Biol. Chem. 278, 33613–33616 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kunert, N., Marhold, J., Stanke, J., Stach, D. & Lyko, F.A. Dnmt2-like protein mediates DNA methylation in Drosophila. Development 130, 5083–5090 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Ryder, E. et al. The DrosDel Deletion set: a Drosophila genome-wide chromosomal deficiency resource. Genetics 177, 615–629 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rudolph, T. et al. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3–3. Mol. Cell 26, 103–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Elgin, S.C.R. & Reuter, G. in Epigenetics (eds. Allis, C.D., Jenuwein, T. & Reinberg, D.) Position effect variegation in Drosophila: a tool to investigate heterochromatin formation (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006).

    Google Scholar 

  23. Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3–K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schotta, G. et al. A silencing pathway to induce H3–K9 and H4–K20 tri-methylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18, 2973–2983 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seum, C. et al. Drosophila SETDB1 is required for chromosome 4 silencing. PLoS Genet. 3, e76 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dorer, D.R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Klenov, M.S. et al. Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res. 35, 5430–5438 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vagin, V.V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Mason, J.M., Frydrychova, R.C. & Biessmann, H. Drosophila telomeres: an exception providing new insights. Bioessays 30, 25–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng, J.C. & Karpen, G.H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–35 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Kube, M. Klimm and K. Kittlaus for experimental support, F. Lyko (Deutsches Krebsforschungszentrum) for providing a DNMT2-specific antibody, S.C.R. Elgin (Washington University, St. Louis) for HP1 antibody, T. Jenuwein (Max-Planck Institute of Immunobiology) for H4K20me3 antibody and Fermentas for providing SgeI enzyme and sharing the quality control data (Supplementary Fig. 1). This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG Priority Programme Epigenetics) and the European Union (EU-network epigenome).

Author information

Authors and Affiliations

Authors

Contributions

G.R. conceived and designed the experiments and contributed to genetic analysis. S.P., O.N., D.W., F.H. and M.C.O. carried out genetic, molecular and immunocytological analysis. G.R. and S.P. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Gunter Reuter.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phalke, S., Nickel, O., Walluscheck, D. et al. Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat Genet 41, 696–702 (2009). https://doi.org/10.1038/ng.360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing