The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl. Trop. Dis. 6, e1814 (2012).

  2. 2.

    et al. Vivax malaria: neglected and not benign. Am. J. Trop. Med. Hyg. 77 (suppl. 6), 79–87 (2007).

  3. 3.

    et al. The global public health significance of Plasmodium vivax. Adv. Parasitol. 80, 1–111 (2012).

  4. 4.

    , , & The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

  5. 5.

    et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc. Natl. Acad. Sci. USA 107, 5967–5971 (2010).

  6. 6.

    Determinants of relapse periodicity in Plasmodium vivax malaria. Malar. J. 10, 297 (2011).

  7. 7.

    et al. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 982–991 (2014).

  8. 8.

    et al. Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene 410, 105–112 (2008).

  9. 9.

    , , , & Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog. Glob. Health 109, 142–152 (2015).

  10. 10.

    et al. Plasmodium vivax diversity and population structure across four continents. PLoS Negl. Trop. Dis. 9, e0003872 (2015).

  11. 11.

    et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763 (2008).

  12. 12.

    et al. Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes. Proc. Natl. Acad. Sci. USA 107, 20045–20050 (2010).

  13. 13.

    et al. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl. Trop. Dis. 7, e2569 (2013).

  14. 14.

    et al. Whole genome sequencing of field isolates provides robust characterization of genetic diversity in Plasmodium vivax. PLoS Negl. Trop. Dis. 6, e1811 (2012).

  15. 15.

    et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet. 44, 1046–1050 (2012).

  16. 16.

    et al. A high resolution case study of a patient with recurrent Plasmodium vivax infections shows that relapses were caused by meiotic siblings. PLoS Negl. Trop. Dis. 8, e2882 (2014).

  17. 17.

    et al. Whole genome sequencing of field isolates reveals extensive genetic diversity in Plasmodium vivax from Colombia. PLoS Negl. Trop. Dis. 9, e0004252 (2015).

  18. 18.

    et al. Next-generation sequencing of Plasmodium vivax patient samples shows evidence of direct evolution in drug-resistance genes. ACS Infect. Dis. 1, 367–379 (2015).

  19. 19.

    et al. Characterization of within-host Plasmodium falciparum diversity using next-generation sequence data. PLoS One 7, e32891 (2012).

  20. 20.

    et al. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl. Trop. Dis. 7, e2489 (2013).

  21. 21.

    et al. The global distribution of the Duffy blood group. Nat. Commun. 2, 266 (2011).

  22. 22.

    et al. Amplification of pvmdr1 associated with multidrug-resistant Plasmodium vivax. J. Infect. Dis. 198, 1558–1564 (2008).

  23. 23.

    et al. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin. Infect. Dis. 52, 612–620 (2011).

  24. 24.

    et al. The first Plasmodium vivax relapses of life are usually genetically homologous. J. Infect. Dis. 205, 680–683 (2012).

  25. 25.

    et al. Using amplicon deep sequencing to detect genetic signatures of Plasmodium vivax relapse. J. Infect. Dis. 212, 999–1008 (2015).

  26. 26.

    et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature 487, 375–379 (2012).

  27. 27.

    et al. Single-cell genomics for dissection of complex malaria infections. Genome Res. 24, 1028–1038 (2014).

  28. 28.

    , & Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

  29. 29.

    et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234 (2015).

  30. 30.

    et al. Sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate synthase at the putative sulfadoxine-binding site. Antimicrob. Agents Chemother. 48, 2214–2222 (2004).

  31. 31.

    et al. Novel point mutations in the dihydrofolate reductase gene of Plasmodium vivax: evidence for sequential selection by drug pressure. Antimicrob. Agents Chemother. 47, 1514–1521 (2003).

  32. 32.

    et al. Tracking origins and spread of sulfadoxine-resistant Plasmodium falciparum dhps alleles in Thailand. Antimicrob. Agents Chemother. 55, 155–164 (2011).

  33. 33.

    et al. Expression of Plasmodium vivax crt-o is related to parasite stage but not ex vivo chloroquine susceptibility. Antimicrob. Agents Chemother. 60, 361–367 (2015).

  34. 34.

    et al. Chloroquine resistant Plasmodium vivax: in vitro characterisation and association with molecular polymorphisms. PLoS One 2, e1089 (2007).

  35. 35.

    et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol. Microbiol. 49, 977–989 (2003).

  36. 36.

    et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J. Biol. Chem. 284, 7687–7696 (2009).

  37. 37.

    , & The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6, 893–903 (2008).

  38. 38.

    et al. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc. Natl. Acad. Sci. USA 105, 16290–16295 (2008).

  39. 39.

    et al. A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito. PLoS Negl. Trop. Dis. 4, e653 (2010).

  40. 40.

    , , & Development and evaluation of a prototype non-woven fabric filter for purification of malaria-infected blood. Malar. J. 10, 251 (2011).

  41. 41.

    et al. Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing. PLoS One 8, e53160 (2013).

  42. 42.

    & Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  43. 43.

    et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  44. 44.

    et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  45. 45.

    et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

  46. 46.

    et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

  47. 47.

    et al. GeneDB--an annotation database for pathogens. Nucleic Acids Res. 40, D98–D108 (2012).

  48. 48.

    et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat. Genet. 44, 1051–1055 (2012).

  49. 49.

    et al. Genome variation and meiotic recombination in Plasmodium falciparum: insights from deep sequencing of genetic crosses. Preprint at bioRxiv 024182, (2015).

  50. 50.

    , & Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

  51. 51.

    et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

  52. 52.

    et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

  53. 53.

    , , & A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

Download references


We thank the patients and communities that provided samples for this study, and our many colleagues who supported this work in the field. Sequencing, data analysis and project coordination were funded by the Wellcome Trust (098051, 090770/Z/09/Z), the Medical Research Council (G0600718) and the UK Department for International Development (M006212). A.B. and I.M. acknowledge the Victorian State Government Operational Infrastructure Support and Australian Government National Health and Medical Research Council Independent Medical Research Institutes Infrastructure Support Scheme (NHMRC IRIISS). S.A. and R.N.P. are funded by the Wellcome Trust (Senior Fellowship in Clinical Science awarded to R.N.P., 091625). This study was supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Author notes

    • Roberto Amato
    •  & Sarah Auburn

    These authors contributed equally to this work.


  1. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.

    • Richard D Pearson
    • , Roberto Amato
    • , Olivo Miotto
    • , Eleanor Drury
    • , Daniel Mead
    • , Mihir Kekre
    • , Susana Campino
    • , Magnus Manske
    • , Victoria J Cornelius
    • , Bronwyn MacInnis
    • , Kirk A Rockett
    • , Alistair Miles
    • , Julian C Rayner
    •  & Dominic P Kwiatkowski
  2. MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford, UK.

    • Richard D Pearson
    • , Roberto Amato
    • , Olivo Miotto
    • , Jacob Almagro-Garcia
    • , Christina Hubbart
    • , Lee Hart
    • , Ben Jeffery
    • , Victoria J Cornelius
    • , Kirk A Rockett
    • , Alistair Miles
    •  & Dominic P Kwiatkowski
  3. Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territories, Australia.

    • Sarah Auburn
    • , Jutta Marfurt
    • , Nicholas M Anstey
    •  & Ric N Price
  4. Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.

    • Olivo Miotto
    •  & Nicholas J White
  5. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.

    • Chanaki Amaratunga
    •  & Rick M Fairhurst
  6. National Centre for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia.

    • Seila Suon
  7. Sampov Meas Referral Hospital, Pursat, Cambodia.

    • Sivanna Mao
  8. Eijkman Institute for Molecular Biology, Jakarta, Indonesia.

    • Rintis Noviyanti
    •  & Hidayat Trimarsanto
  9. Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit and Queen Elizabeth Hospital Clinical Research Centre, Kota Kinabalu, Sabah, Malaysia.

    • Timothy William
  10. Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.

    • Maciej F Boni
    • , Christiane Dolecek
    •  & Hien Tinh Tran
  11. Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.

    • Pascal Michon
    • , Peter Siba
    •  & Livingstone Tavul
  12. Faculty of Medicine and Health Sciences, Divine Word University, Madang, Papua New Guinea.

    • Pascal Michon
  13. Division of Population Health and Immunity, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.

    • Gabrielle Harrison
    • , Alyssa Barry
    •  & Ivo Mueller
  14. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.

    • Gabrielle Harrison
    • , Alyssa Barry
    •  & Ivo Mueller
  15. Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.

    • Marcelo U Ferreira
  16. Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.

    • Nadira Karunaweera
  17. Institut Pasteur de Madagascar, Antananarivo, Madagascar.

    • Milijaona Randrianarivelojosia
  18. Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu, China.

    • Qi Gao
  19. Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.

    • Francois Nosten
  20. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

    • Francois Nosten
    •  & Ric N Price


  1. Search for Richard D Pearson in:

  2. Search for Roberto Amato in:

  3. Search for Sarah Auburn in:

  4. Search for Olivo Miotto in:

  5. Search for Jacob Almagro-Garcia in:

  6. Search for Chanaki Amaratunga in:

  7. Search for Seila Suon in:

  8. Search for Sivanna Mao in:

  9. Search for Rintis Noviyanti in:

  10. Search for Hidayat Trimarsanto in:

  11. Search for Jutta Marfurt in:

  12. Search for Nicholas M Anstey in:

  13. Search for Timothy William in:

  14. Search for Maciej F Boni in:

  15. Search for Christiane Dolecek in:

  16. Search for Hien Tinh Tran in:

  17. Search for Nicholas J White in:

  18. Search for Pascal Michon in:

  19. Search for Peter Siba in:

  20. Search for Livingstone Tavul in:

  21. Search for Gabrielle Harrison in:

  22. Search for Alyssa Barry in:

  23. Search for Ivo Mueller in:

  24. Search for Marcelo U Ferreira in:

  25. Search for Nadira Karunaweera in:

  26. Search for Milijaona Randrianarivelojosia in:

  27. Search for Qi Gao in:

  28. Search for Christina Hubbart in:

  29. Search for Lee Hart in:

  30. Search for Ben Jeffery in:

  31. Search for Eleanor Drury in:

  32. Search for Daniel Mead in:

  33. Search for Mihir Kekre in:

  34. Search for Susana Campino in:

  35. Search for Magnus Manske in:

  36. Search for Victoria J Cornelius in:

  37. Search for Bronwyn MacInnis in:

  38. Search for Kirk A Rockett in:

  39. Search for Alistair Miles in:

  40. Search for Julian C Rayner in:

  41. Search for Rick M Fairhurst in:

  42. Search for Francois Nosten in:

  43. Search for Ric N Price in:

  44. Search for Dominic P Kwiatkowski in:


C.A., S.S., S.M., R.N., H.T., J.M., N.M.A., T.W., M.F.B., C.D., H.T.T., N.J.W., P.M., P.S., L.T., G.H., A.B., I.M., M.U.F., N.K., M.R. and Q.G. carried out field and laboratory work to obtain P. vivax samples for sequencing. C.H., E.D., D.M., M.K., S.C., B.M. and K.A.R. developed and implemented methods for sample processing and sequencing library preparation. R.D.P., L.H., B.J. and M.M. managed data production pipelines. S.A., O.M., V.J.C., B.M., K.A.R., A.M., J.C.R., R.M.F., F.N., R.N.P. and D.P.K. contributed to study design and management. R.D.P., R.A., S.A., O.M., J.A.-G. and D.P.K. performed data analyses. R.D.P., R.A., S.A. and D.P.K. drafted the manuscript, which was reviewed by all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Dominic P Kwiatkowski.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–9, Supplementary Tables 1–8 and Supplementary Note.

Excel files

  1. 1.

    Supplementary Data 1

    Gene-level summaries of variation data. The first sheets give aggregate metrics across all 148 samples used for population genetic analyses, and the other three sheets show metrics for WTH, WKH and ID respectively. Summaries are given for both high-quality SNPs (pass) and all discovered SNPs (all). We do not record SNPs or metrics for genes outside the core genome. N/S, nonsynonymous/synonymous ratio; π, nucleotide diversity per base; D, Tajima's D.

  2. 2.

    Supplementary Data 2

    CNV calls. Start and end coordinates, and copy number for all CNV calls longer than 3 kb.

About this article

Publication history






Further reading