Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BrafV600E cooperates with Pten loss to induce metastatic melanoma

Abstract

Mutational activation of BRAF is the earliest and most common genetic alteration in human melanoma. To build a model of human melanoma, we generated mice with conditional melanocyte-specific expression of BRafV600E. Upon induction of BRafV600E expression, mice developed benign melanocytic hyperplasias that failed to progress to melanoma over 15–20 months. By contrast, expression of BRafV600E combined with Pten tumor suppressor gene silencing elicited development of melanoma with 100% penetrance, short latency and with metastases observed in lymph nodes and lungs. Melanoma was prevented by inhibitors of mTorc1 (rapamycin) or MEK1/2 (PD325901) but, upon cessation of drug administration, mice developed melanoma, indicating the presence of long-lived melanoma-initiating cells in this system. Notably, combined treatment with rapamycin and PD325901 led to shrinkage of established melanomas. These mice, engineered with a common genetic profile to human melanoma, provide a system to study melanoma's cardinal feature of metastasis and for preclinical evaluation of agents designed to prevent or treat metastatic disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Benign hyperplasias induced by melanocyte-specific expression of BRafV600E.
Figure 2: BRafV600E cooperates with Pten loss in the induction of malignant melanoma.
Figure 3: BRafV600E cooperates with Pten loss in the induction of invasive and metastatic melanoma.
Figure 4: Prevention of BRafV600E-induced melanomas by rapamycin.
Figure 5: Prevention of BRafV600E-induced melanomas by PD325901.
Figure 6: Melanoma regression in response to combination treatment with PD325901 and rapamycin.
Figure 7: Inhibition of mouse melanoma cell proliferation by rapamycin or PD325901 in vitro.

References

  1. Chin, L., Merlino, G. & DePinho, R.A. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 12, 3467–3481 (1998).

    Article  CAS  Google Scholar 

  2. Gray-Schopfer, V.C., da Rocha Dias, S. & Marais, R. The role of B-RAF in melanoma. Cancer Metastasis Rev. 24, 165–183 (2005).

    Article  CAS  Google Scholar 

  3. Chin, L. The genetics of malignant melanoma: lessons from mouse and man. Nat. Rev. Cancer 3, 559–570 (2003).

    Article  CAS  Google Scholar 

  4. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  5. Garraway, L.A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  Google Scholar 

  6. Hayward, N.K. Genetics of melanoma predisposition. Oncogene 22, 3053–3062 (2003).

    Article  CAS  Google Scholar 

  7. Pollock, P.M. et al. High frequency of BRAF mutations in nevi. Nat. Genet. 33, 19–20 (2003).

    Article  CAS  Google Scholar 

  8. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  9. Mercer, K.E. & Pritchard, C.A. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta 1653, 25–40 (2003).

    CAS  PubMed  Google Scholar 

  10. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  11. Sviderskaya, E.V. et al. p16(Ink4a) in melanocyte senescence and differentiation. J. Natl. Cancer Inst. 94, 446–454 (2002).

    Article  CAS  Google Scholar 

  12. Wellbrock, C. et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338–2342 (2004).

    Article  CAS  Google Scholar 

  13. Chin, L., Garraway, L.A. & Fisher, D.E. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 20, 2149–2182 (2006).

    Article  CAS  Google Scholar 

  14. Lin, W.M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    Article  CAS  Google Scholar 

  15. Tsao, H., Goel, V., Wu, H., Yang, G. & Haluska, F.G. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. 122, 337–341 (2004).

    Article  CAS  Google Scholar 

  16. Tsao, H., Zhang, X., Fowlkes, K. & Haluska, F.G. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 60, 1800–1804 (2000).

    CAS  PubMed  Google Scholar 

  17. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  Google Scholar 

  18. Tonks, I.D. et al. Tyrosinase-Cre mice for tissue-specific gene ablation in neural crest and neuroepithelial-derived tissues. Genesis 37, 131–138 (2003).

    Article  CAS  Google Scholar 

  19. Guyonneau, L., Murisier, F., Rossier, A., Moulin, A. & Beermann, F. Melanocytes and pigmentation are affected in dopachrome tautomerase knockout mice. Mol. Cell. Biol. 24, 3396–3403 (2004).

    Article  CAS  Google Scholar 

  20. Bosenberg, M. et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44, 262–267 (2006).

    Article  CAS  Google Scholar 

  21. Bennett, D.C. Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22, 3063–3069 (2003).

    Article  CAS  Google Scholar 

  22. Jonsson, G. et al. Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene 26, 4738–4748 (2007).

    Article  CAS  Google Scholar 

  23. Willmore-Payne, C., Holden, J.A., Hirschowitz, S. & Layfield, L.J. BRAF and c-kit gene copy number in mutation-positive malignant melanoma. Hum. Pathol. 37, 520–527 (2006).

    Article  CAS  Google Scholar 

  24. Trotman, L.C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, E59 (2003).

    Article  Google Scholar 

  25. Inoue-Narita, T. et al. Pten deficiency in melanocytes results in resistance to hair graying and susceptibility to carcinogen-induced melanomagenesis. Cancer Res. 68, 5760–5768 (2008).

    Article  CAS  Google Scholar 

  26. Jimenez, M., Tsukamoto, K. & Hearing, V.J. Tyrosinases from two different loci are expressed by normal and by transformed melanocytes. J. Biol. Chem. 266, 1147–1156 (1991).

    CAS  PubMed  Google Scholar 

  27. Hodi, F.S. et al. Major response to imatinib mesylate in KIT-mutated melanoma. J. Clin. Oncol. 26, 2046–2051 (2008).

    Article  CAS  Google Scholar 

  28. Ohren, J.F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).

    Article  CAS  Google Scholar 

  29. Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  Google Scholar 

  30. Sheridan, C., Brumatti, G. & Martin, S.J. Oncogenic B-RafV600E inhibits apoptosis and promotes ERK-dependent inactivation of Bad and Bim. J. Biol. Chem. 283, 22128–22135 (2008).

    Article  CAS  Google Scholar 

  31. Cartlidge, R.A. et al. Oncogenic BRAF(V600E) inhibits BIM expression to promote melanoma cell survival. Pigment Cell Melanoma Res. 21, 534–544 (2008).

    Article  CAS  Google Scholar 

  32. Walker, G.J. & Hayward, N.K. Pathways to melanoma development: lessons from the mouse. J. Invest. Dermatol. 119, 783–792 (2002).

    Article  CAS  Google Scholar 

  33. Bardeesy, N., Wong, K.K., DePinho, R.A. & Chin, L. Animal models of melanoma: recent advances and future prospects. Adv. Cancer Res. 79, 123–156 (2000).

    Article  CAS  Google Scholar 

  34. Tietze, M.K. & Chin, L. Murine models of malignant melanoma. Mol. Med. Today 6, 408–410 (2000).

    Article  CAS  Google Scholar 

  35. Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611 (1997).

    Article  CAS  Google Scholar 

  36. Zhu, J., Woods, D., McMahon, M. & Bishop, J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

    Article  CAS  Google Scholar 

  37. Olive, K.P. & Tuveson, D.A. The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin. Cancer Res. 12, 5277–5287 (2006).

    Article  CAS  Google Scholar 

  38. Patton, E.E. et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249–254 (2005).

    Article  CAS  Google Scholar 

  39. Chudnovsky, Y., Adams, A.E., Robbins, P.B., Lin, Q. & Khavari, P.A. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat. Genet. 37, 745–749 (2005).

    Article  CAS  Google Scholar 

  40. Freeman, D.J. et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3, 117–130 (2003).

    Article  CAS  Google Scholar 

  41. Larue, L. & Delmas, V. The WNT/Beta-catenin pathway in melanoma. Front. Biosci. 11, 733–742 (2006).

    Article  CAS  Google Scholar 

  42. Landi, M.T. et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science 313, 521–522 (2006).

    Article  CAS  Google Scholar 

  43. Eisen, T. et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581–586 (2006).

    Article  CAS  Google Scholar 

  44. Flaherty, K.T. Chemotherapy and targeted therapy combinations in advanced melanoma. Clin. Cancer Res. 12, 2366s–2370s (2006).

    Article  CAS  Google Scholar 

  45. Lutzky, J., Bauer, J. & Bastian, B.C. Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21, 492–493 (2008).

    Article  Google Scholar 

  46. Maira, S.M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7, 1851–1863 (2008).

    Article  CAS  Google Scholar 

  47. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  Google Scholar 

  48. Yeh, T.C. et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin. Cancer Res. 13, 1576–1583 (2007).

    Article  CAS  Google Scholar 

  49. Sosman, J.A. & Puzanov, I. Molecular targets in melanoma from angiogenesis to apoptosis. Clin. Cancer Res. 12, 2376s–2383s (2006).

    Article  CAS  Google Scholar 

  50. Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the McMahon and Bosenberg laboratories as well as B. Bastian, L. Chin, E. Filenova, B. Hann, M. Herlyn, L. Johnson, G. Merlino, P. P. Pandolfi, V. Hearing, M. Held, G. Kay and D. Matzen for the provision of mouse strains, reagents, advice and support. M.M. thanks A. Ricart and J. Sebolt-Leopold (Pfizer) for provision of PD325901 and acknowledges the support of the University of California San Francisco Helen Diller Family Comprehensive Cancer Center Mouse Pathology and Pre-Clinical Therapeutics cores. R.A.D. is supported as an American Cancer Society Research Professor. This work was supported by grants from the Melanoma Research Foundation, U.C. Discovery Award and from the US National Institutes of Health (CA 108972 to M.M., CA 84313 to R.A.D. and CA 89124 and CA 112054 to M.B., respectively).

Author information

Authors and Affiliations

Authors

Contributions

M.M. and M.B. established a collaboration for the exchange of relevant mouse strains to enable the generation and analysis of Tyr::CreER, BrafCA, Ptenlox mice and contributed to the manuscript equally as senior authors. D.D. (UCSF) and D.P.C. (University of Vermont) performed all of the mouse experiments in parallel. Representative figures were selected for publication by D.D., D.P.C., M.M. and M.B. and were prepared for publication by D.D. R.A.C. performed immunoblot analysis of 2697T cells treated with PD325901. B.N. and W.E.D. assisted with and optimized mouse tumor induction and performed immunohistochemical analysis. A.N.K. analyzed Tyr::CreER, BrafCA, Ptenlox4-5 mice treated with multiple cycles of PD325901. M.J.Y. generated and characterized Ptenlox5 mice in the laboratory of R.A.D. M.M. wrote the manuscript and shepherded it through review with contributions from D.D., D.P.C., M.J.Y., R.A.D. and M.B.

Corresponding authors

Correspondence to Martin McMahon or Marcus Bosenberg.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Tables 1 and 2 (PDF 2651 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dankort, D., Curley, D., Cartlidge, R. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41, 544–552 (2009). https://doi.org/10.1038/ng.356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing