Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells

Abstract

The extent to which differences in germline DNA copy number contribute to natural phenotypic variation is unknown. We analyzed the copy number content of the mouse genome to sub–10-kb resolution. We identified over 1,300 copy number variant regions (CNVRs), most of which are <10 kb in length, are found in more than one strain, and, in total, span 3.2% (85 Mb) of the genome. To assess the potential functional impact of copy number variation, we mapped expression profiles of purified hematopoietic stem and progenitor cells, adipose tissue and hypothalamus to CNVRs in cis. Of the more than 600 significant associations between CNVRs and expression profiles, most map to CNVRs outside of the transcribed regions of genes. In hematopoietic stem and progenitor cells, up to 28% of strain-dependent expression variation is associated with copy number variation, supporting the role of germline CNVs as key contributors to natural phenotypic variation in the laboratory mouse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CNVR genotyping.
Figure 2: Location of CNVRs in the inbred mouse genome.
Figure 3: Distribution of CNVR sizes.
Figure 4: Colocalization of CNVRs with other genomic elements.
Figure 5: Tissue-specific CNVR eQTLs.
Figure 6: CNVR eQTLs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Graubert, T.A. et al. A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genet. 3, e3 (2007).

    Article  Google Scholar 

  2. Li, J. et al. Genomic segmental polymorphisms in inbred mouse strains. Nat. Genet. 36, 952–954 (2004).

    Article  CAS  Google Scholar 

  3. Perry, G.H. et al. Hotspots for copy number variation in chimpanzees and humans. Proc. Natl. Acad. Sci. USA 103, 8006–8011 (2006).

    Article  CAS  Google Scholar 

  4. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  Google Scholar 

  5. Snijders, A. et al. Mapping segmental and sequence variations among laboratory mice using BAC array CGH. Genome Res. 15, 302–311 (2005).

    Article  CAS  Google Scholar 

  6. Dopman, E.B. & Hartl, D.L. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 104, 19920–19925 (2007).

    Article  CAS  Google Scholar 

  7. Emerson, J.J., Cardoso-Moreira, M., Borevitz, J.O. & Long, M. Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320, 1629–1631 (2008).

    Article  CAS  Google Scholar 

  8. Guryev, V. et al. Distribution and functional impact of DNA copy number variation in the rat. Nat. Genet. 40, 538–545 (2008).

    Article  CAS  Google Scholar 

  9. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  Google Scholar 

  10. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  11. Aitman, T.J. et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439, 851–855 (2006).

    Article  CAS  Google Scholar 

  12. McCarroll, S.A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40, 1107–1112 (2008).

    Article  CAS  Google Scholar 

  13. Singleton, A.B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  Google Scholar 

  14. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008).

    Article  CAS  Google Scholar 

  15. Bogue, M.A. & Grubb, S.C. The Mouse Phenome Project. Genetica. 122, 71–74 (2004).

    Article  CAS  Google Scholar 

  16. Cahan, P. et al. wuHMM: a robust algorithm to detect DNA copy number variation using long oligonucleotide microarray data. Nucleic. Acids Res. 36, e41 (2008).

    Article  Google Scholar 

  17. Kaufman, L. & Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, New York, 1990).

    Book  Google Scholar 

  18. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E. & Pritchard, J.K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81 (2006).

    Article  CAS  Google Scholar 

  19. Korbel, J.O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  CAS  Google Scholar 

  20. She, X., Cheng, Z., Zollner, S., Church, D.M. & Eichler, E.E. Mouse segmental duplication and copy number variation. Nat. Genet. 40, 909–914 (2008).

    Article  CAS  Google Scholar 

  21. Cutler, G., Marshall, L.A., Chin, N., Baribault, H. & Kassner, P.D. Significant gene content variation characterizes the genomes of inbred mouse strains. Genome Res. 17, 1743–1754 (2007).

    Article  CAS  Google Scholar 

  22. Egan, C.M., Sridhar, S., Wigler, M. & Hall, I.M. Recurrent DNA copy number variation in the laboratory mouse. Nat. Genet. 39, 1384–1389 (2007).

    Article  CAS  Google Scholar 

  23. Watkins-Chow, D.E. & Pavan, W.J. Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. Genome Res. 18, 60–66 (2008).

    Article  CAS  Google Scholar 

  24. Lupski, J.R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998).

    Article  CAS  Google Scholar 

  25. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  Google Scholar 

  26. Akagi, K., Li, J., Stephens, R.M., Volfovsky, N. & Symer, D.E. Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition. Genome Res. 18, 869–880 (2008).

    Article  CAS  Google Scholar 

  27. Chambers, S.M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem. Cell 1, 578–591 (2007).

    Article  CAS  Google Scholar 

  28. McClurg, P. et al. Genomewide association analysis in diverse inbred mice: power and population structure. Genetics 176, 675–683 (2007).

    Article  CAS  Google Scholar 

  29. Wu, C. et al. Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet. 4, e1000070 (2008).

    Article  Google Scholar 

  30. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  Google Scholar 

  31. Pletcher, M.T. et al. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol. 2, e393 (2004).

    Article  Google Scholar 

  32. McClurg, P., Pletcher, M.T., Wiltshire, T. & Su, A.I. Comparative analysis of haplotype association mapping algorithms. BMC Bioinformatics 7, 61 (2006).

    Article  Google Scholar 

  33. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  34. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 37, 225–232 (2005).

    Article  CAS  Google Scholar 

  35. Bishop, T.R., Cohen, P.J., Boyer, S.H., Noyes, A.N. & Frelin, L.P. Isolation of a rat liver delta-aminolevulinate dehydrase (ALAD) cDNA clone: evidence for unequal ALAD gene dosage among inbred mouse strains. Proc. Natl. Acad. Sci. USA 83, 5568–5572 (1986).

    Article  CAS  Google Scholar 

  36. Bishop, T.R., Miller, M.W., Wang, A. & Dierks, P.M. Multiple copies of the ALA-D gene are located at the Lv locus in Mus domesticus mice. Genomics 48, 221–231 (1998).

    Article  CAS  Google Scholar 

  37. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  38. Hovatta, I. et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438, 662–666 (2005).

    Article  CAS  Google Scholar 

  39. Ohtsuka, M., Inoko, H., Kulski, J.K. & Yoshimura, S. Major histocompatibility complex (Mhc) class Ib gene duplications, organization and expression patterns in mouse strain C57BL/6. BMC Genomics 9, 178 (2008).

    Article  Google Scholar 

  40. Kumar, P.P. et al. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat. Cell Biol. 9, 45–56 (2007).

    Article  Google Scholar 

  41. Hinds, D.A., Kloek, A.P., Jen, M., Chen, X. & Frazer, K.A. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat. Genet. 38, 82–85 (2006).

    Article  CAS  Google Scholar 

  42. Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  Google Scholar 

  43. Korbel, J.O. et al. The current excitement about copy-number variation: how it relates to gene duplications and protein families. Curr. Opin. Struct. Biol. 18, 366–374 (2008).

    Article  CAS  Google Scholar 

  44. Churchill, G.A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet 36, 1133–1137 (2004).

    Article  CAS  Google Scholar 

  45. Selzer, R.R. et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosom. Cancer 44, 305–319 (2005).

    Article  CAS  Google Scholar 

  46. Szatkiewicz, J.P. et al. An imputed genotype resource for the laboratory mouse. Mamm. Genome 19, 199–208 (2008).

    Article  Google Scholar 

  47. Tian, D. et al. Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature 455, 105–108 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the US National Institutes of Health/National Cancer Institute (CA101937). P.C. was supported in part by the National Human Genome Research Institute (T32 HG000045) and a Kauffman Fellowship. Mice were provided through a collaboration with the Mouse Phenome Project (The Jackson Laboratory, Bar Harbor, Maine). Additional mice were provided by M. You (Washington University). We thank T. Ley, D. Link and M. Walter for helpful discussions. Cell sorting was done by the High Speed Cell Sorter Core in the Alvin J. Siteman Cancer Center at Washington University School of Medicine. The Siteman Cancer Center is supported in part by an NCI Cancer Center Support Grant (P30 CA91842).

Author information

Authors and Affiliations

Authors

Contributions

P.C. and T.A.G. designed the study; P.C., Y.L. and M.I. performed experiments; P.C. and T.A.G. analyzed the data; P.C., Y.L. and T.A.G. wrote the manuscript.

Corresponding author

Correspondence to Timothy A Graubert.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1,3,4,5,7,8 (PDF 2442 kb)

Supplementary Table 2

Annotation of high-confidence CNVRs (XLS 1033 kb)

Supplementary Table 6

Inferred CNVR genotypes in BXD mice (XLS 592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahan, P., Li, Y., Izumi, M. et al. The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells. Nat Genet 41, 430–437 (2009). https://doi.org/10.1038/ng.350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing