Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia

Abstract

Charting differences between tumors and normal tissue is a mainstay of cancer research. However, clonal tumor expansion from complex normal tissue architectures potentially obscures cancer-specific events, including divergent epigenetic patterns. Using whole-genome bisulfite sequencing of normal B cell subsets, we observed broad epigenetic programming of selective transcription factor binding sites coincident with the degree of B cell maturation. By comparing normal B cells to malignant B cells from 268 patients with chronic lymphocytic leukemia (CLL), we showed that tumors derive largely from a continuum of maturation states reflected in normal developmental stages. Epigenetic maturation in CLL was associated with an indolent gene expression pattern and increasingly favorable clinical outcomes. We further uncovered that most previously reported tumor-specific methylation events are normally present in non-malignant B cells. Instead, we identified a potential pathogenic role for transcription factor dysregulation in CLL, where excess programming by EGR and NFAT with reduced EBF and AP-1 programming imbalances the normal B cell epigenetic program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epigenetic programming during B cell maturation.
Figure 2: Evaluation of the maturation state of CLL using DNA methylation.
Figure 3: The impact of DNA methylation programming in patients with CLL.
Figure 4: Previously identified aberrant methylation in CLL is found in comparison of normal B cell subtypes.
Figure 5: Deficiency in DNA methylation programming in LP-CLLs results from loss of expression of the EBF1 and FOS transcription factors.
Figure 6: Transcription factor binding sites enriched in CLL-specific hypomethylation.
Figure 7: Summary of global and transcription factor binding site DNA methylation programming in normal B cells and CLL.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  3. Ziller, M.J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith, Z.D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    CAS  PubMed  Google Scholar 

  5. Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 750–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lara-Astiaso, D. et al. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Timp, W. & Feinberg, A.P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer 13, 497–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Queiros, A.C. et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 29, 598–605 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Cahill, N. et al. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 27, 150–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Oakes, C.C. et al. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov. 4, 348–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Landau, D.A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kulis, M. et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 47, 746–756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lebecque, S., de Bouteiller, O., Arpin, C., Banchereau, J. & Liu, Y.J. Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J. Exp. Med. 185, 563–571 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Q. et al. Tagmentation-based whole-genome bisulfite sequencing. Nat. Protoc. 8, 2022–2032 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Shaknovich, R. et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 118, 3559–3569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lai, A.Y. et al. DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation. Genome Res. 23, 2030–2041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dvinge, H. et al. Sample processing obscures cancer-specific alterations in leukemic transcriptomes. Proc. Natl. Acad. Sci. USA 111, 16802–16807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Florean, C., Schnekenburger, M., Grandjenette, C., Dicato, M. & Diederich, M. Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics 3, 581–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Teschendorff, A.E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith, E.N. et al. Genetic and epigenetic profiling of CLL disease progression reveals limited somatic evolution and suggests a relationship to memory-cell development. Blood Cancer J. 5, e303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Claus, R. et al. Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood 124, 42–48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zandi, S. et al. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J. Immunol. 181, 3364–3372 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Heltemes-Harris, L.M. et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. J. Exp. Med. 208, 1135–1149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seifert, M. et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 209, 2183–2198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferreira, P.G. et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 24, 212–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puente, X.S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Landau, D.A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herishanu, Y. et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117, 563–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mockridge, C.I. et al. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 109, 4424–4431 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Reindl, L. et al. Biological and clinical characterization of recurrent 14q deletions in CLL and other mature B-cell neoplasms. Br. J. Haematol. 151, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Edelmann, J. et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 120, 4783–4794 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Pham, T.H. et al. Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119, e161–e171 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Damm, F. et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4, 1088–1101 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194, 1625–1638 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klein, U., Rajewsky, K. & Küppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, L. et al. ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood 111, 2685–2692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prange, K.H., Singh, A.A. & Martens, J.H. The genome-wide molecular signature of transcription factors in leukemia. Exp. Hematol. 42, 637–650 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Kretzmer, H. et al. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat. Genet. 47, 1316–1325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Gururajan, M. et al. Early growth response genes regulate B cell development, proliferation, and immune response. J. Immunol. 181, 4590–4602 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Peng, S.L., Gerth, A.J., Ranger, A.M. & Glimcher, L.H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Garrett-Sinha, L.A. et al. PU.1 and Spi-B are required for normal B cell receptor–mediated signal transduction. Immunity 10, 399–408 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Gustems, M. et al. c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Res. 42, 3059–3072 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Rosén, A., Murray, F., Evaldsson, C. & Rosenquist, R. Antigens in chronic lymphocytic leukemia—implications for cell origin and leukemogenesis. Semin. Cancer Biol. 20, 400–409 (2010).

    Article  PubMed  CAS  Google Scholar 

  50. Pekarsky, Y. et al. Tcl1 functions as a transcriptional regulator and is directly involved in the pathogenesis of CLL. Proc. Natl. Acad. Sci. USA 105, 19643–19648 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kröber, A. et al. VH mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100, 1410–1416 (2002).

    Article  PubMed  Google Scholar 

  52. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 1, 177–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

  55. Teschendorff, A.E. et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29, 189–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Assenov, Y. et al. Comprehensive analysis of DNA methylation data with RnBeads. Nat. Methods 11, 1138–1140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brocks, D. et al. Epigenetic intratumor heterogeneity and clonal evolution in aggressive prostate cancer. Cell Rep. 8, 798–806 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Desper, R. & Gascuel, O. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comput. Biol. 9, 687–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bohle, V., Döring, C., Hansmann, M.L. & Küppers, R. Role of early B-cell factor 1 (EBF1) in Hodgkin lymphoma. Leukemia 27, 671–679 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Genomics and Proteomics Core Facility at the German Cancer Research Center, in particular R. Fisher and M. Schick for their excellent technical support and expertise. We thank Imaging Center Essen (IMCES) for support in B cell sorting. We are grateful to M. Bähr, O. Mücke, M. Helf and S. Ohl for technical support. We also thank J. Edelmann, M. Seiffert, L. Sellner, B. Wu, V. Hovestadt, A. Kundaje and J.I. Martín-Subero for providing samples, data and/or analytical tools. S.S. is supported by the Else Kröner Fresenius Stiftung (2012_A146), the Virtual Helmholtz Institute (VH-VI-404) and the Deutsche Forschungsgemeinschaft (SFB 1074 projects B1 and B2). This work was supported in part by the Helmholtz Association, from the DKFZ–Heidelberg Center for Personalized Oncology (DKFZ-HIPO), the German Cancer Consortium (DKTK), the CLL Research Consortium (CRC), the German Federal Ministry of Education and Research CancerEpiSys network (BMBF 031 6049C), the Virtual Helmholtz Institute (VH-VI-404), the Deutsche Forschungsgemeinschaft (GKR1431 and SE1885/2-1), the Leukemia and Lymphoma Society (P01 CA081534), the Four Winds Foundation, the European Union's Seventh Framework Programme through the Blueprint Consortium, the German Ministry of Education and Research (BMBF) through the ICGC MMML-Seq Project (01KU1002A-J) and the US National Institutes of Health (PO1-CA81534).

Author information

Authors and Affiliations

Authors

Contributions

C.C.O., M.S., M.P., A.S., D.W. and C.P. designed and performed experimental work. C.C.O., Y.A., L.G., A.S.R., Q.W., C.D.I., S.D.K., D.B., D.B.L. and O.B. performed data analysis. M.S., L.R., T.J.K., H.D., R.K., T.Z., S.S. and J.C.B. provided clinical samples or data. C.C.O., M.S. and C.P. prepared the manuscript and figures. B.B., D.M., M.Z., P.L., T.Z., S.S., J.C.B. and C.P. provided project leadership. All authors contributed to the final manuscript.

Corresponding authors

Correspondence to Christopher C Oakes or Christoph Plass.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Note and Supplementary Tables 2–11. (PDF 17289 kb)

Supplementary Table 1

DNA methylation levels of the top 5,000 hypermethylated windows. (XLSX 1089 kb)

Supplementary Table 12

TWGBS windows overlapping a TFBS with the corresponding motif. (XLSX 2403 kb)

Supplementary Table 13

450K probes overlapping a TFBS with the corresponding motif. (XLSX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oakes, C., Seifert, M., Assenov, Y. et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 48, 253–264 (2016). https://doi.org/10.1038/ng.3488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing