Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Segmental copy number variation shapes tissue transcriptomes

Abstract

Copy number variation (CNV) is a key source of genetic diversity, but a comprehensive understanding of its phenotypic effect is only beginning to emerge. We have generated a CNV map in wild mice and classical inbred strains. Genome-wide expression data from six major organs show not only that expression of genes within CNVs tend to correlate with copy number changes, but also that CNVs influence the expression of genes in their vicinity, an effect that extends up to half a megabase. Genes within CNVs show lower expression and more specific spatial expression patterns than genes mapping elsewhere. Our analyses reveal differential constraint on copy number changes of genes expressed in different tissues. Dosage alterations of brain-expressed genes are less frequent than those of other genes and are buffered by tighter transcriptional regulation. Our study provides initial evidence that CNVs shape tissue transcriptomes on a global scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of genes within CNVs, in neighboring regions and elsewhere in the genome.
Figure 2: Expression variability of CNV and non-CNV transcripts between and within strains.
Figure 3: Spatial expression patterns of CNV genes.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  Google Scholar 

  2. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  3. Korbel, J.O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  CAS  Google Scholar 

  4. Kidd, J.M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  CAS  Google Scholar 

  5. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  Google Scholar 

  6. Reymond, A., Henrichsen, C.N., Harewood, L. & Merla, G. Side effects of genome structural changes. Curr. Opin. Genet. Dev. 17, 381–386 (2007).

    Article  CAS  Google Scholar 

  7. Eichler, E.E. et al. Completing the map of human genetic variation. Nature 447, 161–165 (2007).

    Article  CAS  Google Scholar 

  8. Perry, G.H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).

    Article  CAS  Google Scholar 

  9. Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  Google Scholar 

  10. Merla, G. et al. Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am. J. Hum. Genet. 79, 332–341 (2006).

    Article  CAS  Google Scholar 

  11. Li, J. et al. Genomic segmental polymorphisms in inbred mouse strains. Nat. Genet. 36, 952–954 (2004).

    Article  CAS  Google Scholar 

  12. Adams, D.J. et al. Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains. Nat. Genet. 37, 532–536 (2005).

    Article  CAS  Google Scholar 

  13. Snijders, A.M. et al. Mapping segmental and sequence variations among laboratory mice using BAC array CGH. Genome Res. 15, 302–311 (2005).

    Article  CAS  Google Scholar 

  14. Graubert, T.A. et al. A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genet. 3, e3 (2007).

    Article  Google Scholar 

  15. Egan, C.M., Sridhar, S., Wigler, M. & Hall, I.M. Recurrent DNA copy number variation in the laboratory mouse. Nat. Genet. 39, 1384–1389 (2007).

    Article  CAS  Google Scholar 

  16. Cutler, G., Marshall, L.A., Chin, N., Baribault, H. & Kassner, P.D. Significant gene content variation characterizes the genomes of inbred mouse strains. Genome Res. 17, 1743–1754 (2007).

    Article  CAS  Google Scholar 

  17. Guryev, V. et al. Distribution and functional impact of DNA copy number variation in the rat. Nat. Genet. 40, 538–545 (2008).

    Article  CAS  Google Scholar 

  18. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  Google Scholar 

  19. Beck, J.A. et al. Genealogies of mouse inbred strains. Nat. Genet. 24, 23–25 (2000).

    Article  CAS  Google Scholar 

  20. Frazer, K.A. et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448, 1050–1053 (2007).

    Article  CAS  Google Scholar 

  21. Yang, H., Bell, T.A., Churchill, G.A. & Pardo-Manuel de Villena, F. On the subspecific origin of the laboratory mouse. Nat. Genet. 39, 1100–1107 (2007).

    Article  CAS  Google Scholar 

  22. She, X., Cheng, Z., Zollner, S., Church, D.M. & Eichler, E.E. Mouse segmental duplication and copy number variation. Nat. Genet. 40, 909–914 (2008).

    Article  CAS  Google Scholar 

  23. Watkins-Chow, D.E. & Pavan, W.J. Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. Genome Res. 18, 60–66 (2008).

    Article  CAS  Google Scholar 

  24. Lee, J.A. et al. Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann. Neurol. 59, 398–403 (2006).

    Article  CAS  Google Scholar 

  25. Gabellini, D., Green, M.R. & Tupler, R. Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110, 339–348 (2002).

    Article  CAS  Google Scholar 

  26. Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005).

    Article  CAS  Google Scholar 

  27. Molina, J. et al. Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski Syndrome. Hum. Mol. Genet. 17, 2486–2495 (2008).

    Article  CAS  Google Scholar 

  28. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  Google Scholar 

  29. Kleinjan, D.J. & van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet. 7, 1611–1618 (1998).

    Article  CAS  Google Scholar 

  30. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  Google Scholar 

  31. Gabellini, D. et al. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 439, 973–977 (2006).

    Article  CAS  Google Scholar 

  32. Muncke, N. et al. Position effect on PLP1 may cause a subset of Pelizaeus-Merzbacher disease symptoms. J. Med. Genet. 41, e121 (2004).

    Article  CAS  Google Scholar 

  33. Fraser, P. & Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413–417 (2007).

    Article  CAS  Google Scholar 

  34. Heard, E. & Bickmore, W. The ins and outs of gene regulation and chromosome territory organisation. Curr. Opin. Cell Biol. 19, 311–316 (2007).

    Article  CAS  Google Scholar 

  35. Denoeud, F. et al. Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res. 17, 746–759 (2007).

    Article  CAS  Google Scholar 

  36. Dopman, E.B. & Hartl, D.L. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 104, 19920–19925 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Paillusson, O. Hagenbüchle and K. Harshman from the Lausanne DNA Array Facility for technical help; F. Bonhomme, P. Boursot, J. Gilliéron, S. Maret, A. Orth and M. Tafti for reagents; and S. Deutsch and J. Goudet for suggestions. We are grateful to R.W. Williams for sharing expression data and to the Montpellier wild mice genetic repository and the Museum of Natural History of Geneva for mice and tissue samples. This work was supported by grants from the Jérôme Lejeune Foundation, the Désirée and Niels Yde Foundation, the Novartis Foundation, the Swiss National Science Foundation and the European Commission anEUploidy Integrated Project (grant 037627) to A.R.; by grant NIH R01 GM073822 (PI J. Borevitz) to S.Z.; as well as grants from the European Commission (STREP, PKB140404), EMBO Young Investigator Program and Swiss National Science Foundation to H.K.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and H.K. designed and organized the study. Financial support for the generation of the data was obtained by A.R.; C.N.H., E.C. and M.R. prepared the necessary materials and produced the data; and C.N.H., N.V., S.P. and F.S. conducted the statistical analyses guided by H.K. and A.R. The time-dependent hidden Markov method was designed by S.Z. with contributions from N.V. The manuscript was co-written by H.K. and A.R. with contributions from C.N.H., N.V. and S.Z.

Corresponding authors

Correspondence to Henrik Kaessmann or Alexandre Reymond.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Methods, Supplementary Figures 1–7 and Supplementary Tables 1–5 (PDF 6785 kb)

Supplementary Table 2

Coordinates and aCGH log2 signals of predicted CNVs (XLS 12027 kb)

Supplementary Table 4

Coordinates and validation of predicted CNVs assessed on the high-resolution custom-array (XLS 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrichsen, C., Vinckenbosch, N., Zöllner, S. et al. Segmental copy number variation shapes tissue transcriptomes. Nat Genet 41, 424–429 (2009). https://doi.org/10.1038/ng.345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing