Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors

Abstract

Whole-genome sequencing detected structural rearrangements of TERT in 17 of 75 high-stage neuroblastomas, with five cases resulting from chromothripsis. Rearrangements were associated with increased TERT expression and targeted regions immediately up- and downstream of TERT, positioning a super-enhancer close to the breakpoints in seven cases. TERT rearrangements (23%), ATRX deletions (11%) and MYCN amplifications (37%) identify three almost non-overlapping groups of high-stage neuroblastoma, each associated with very poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TERT rearrangements activate TERT mRNA expression in neuroblastoma tumors.
Figure 2: Chromosomal aberrations and mutations in high-stage neuroblastoma and the prognostic value of these genetic changes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Molenaar, J.J. et al. Nature 483, 589–593 (2012).

    Article  CAS  Google Scholar 

  2. Cheung, N.K. et al. J. Am. Med. Assoc. 307, 1062–1071 (2012).

    Article  CAS  Google Scholar 

  3. Pugh, T.J. et al. Nat. Genet. 45, 279–284 (2013).

    Article  CAS  Google Scholar 

  4. Sausen, M. et al. Nat. Genet. 45, 12–17 (2013).

    Article  CAS  Google Scholar 

  5. Heaphy, C.M. et al. Science 333, 425 (2011).

    Article  CAS  Google Scholar 

  6. Huang, F.W. et al. Science 339, 957–959 (2013).

    Article  CAS  Google Scholar 

  7. Horn, S. et al. Science 339, 959–961 (2013).

    Article  CAS  Google Scholar 

  8. Davis, C.F. et al. Cancer Cell 26, 319–330 (2014).

    Article  CAS  Google Scholar 

  9. Bell, R.J.A. et al. Science 348, 1036–1039 (2015).

    Article  CAS  Google Scholar 

  10. Lindner, S. et al. Biomed. Rep. 4, 443–446 (2015).

    Article  Google Scholar 

  11. Chipumuro, E. et al. Cell 159, 1126–1139 (2014).

    Article  CAS  Google Scholar 

  12. Roadmap Epigenomics Consortium. Nature 518, 317–330 (2015).

  13. Zhao, Y., Wang, S., Popova, E.Y., Grigoryev, S.A. & Zhu, J. Genes Chromosom. Cancer 48, 963–974 (2009).

    Article  CAS  Google Scholar 

  14. Killela, P.J. et al. Proc. Natl. Acad. Sci. USA 110, 6021–6026 (2013).

    Article  CAS  Google Scholar 

  15. Eckel-Passow, J.E. et al. N. Engl. J. Med. 372, 2499–2508 (2015).

    Article  CAS  Google Scholar 

  16. Zhao, Y., Cheng, D., Wang, S. & Zhu, J. Nucleic Acids Res. 42, 10385–10398 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Villa Joep Foundation, the Children Cancer-Free Foundation (KIKA) and the KWF/Netherlands Cancer Foundation and by a European Union European Research Council (ERC) Advanced grant to R. Versteeg.

Author information

Authors and Affiliations

Authors

Contributions

L.J.V., J.K., J.J.M. and R. Versteeg designed the study and prepared the manuscript. L.J.V., N.E.H. and P.v.S. performed experiments. J.K., D.A.Z., R. Volckmann and L.J.V. analyzed data. G.A.M.T. and M.M.v.N. contributed patient material. R.E.G. provided enhancer data.

Corresponding author

Correspondence to Rogier Versteeg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8. (PDF 6950 kb)

Supplementary Table 1

Clinical information on the patients. (XLSX 20 kb)

Supplementary Table 2

Breakpoint analysis of TERT rearrangements. (XLSX 13 kb)

Supplementary Table 3

Enhancer enrichment simulation on 12 random locations. (XLSX 12 kb)

Supplementary Table 4

Cox proportional hazard analysis for MYCN, TERT and ATRX events. (XLSX 11 kb)

Supplementary Table 5

Primers used for RT-PCR. (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentijn, L., Koster, J., Zwijnenburg, D. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47, 1411–1414 (2015). https://doi.org/10.1038/ng.3438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing