Article | Published:

DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control

Nature Genetics volume 47, pages 13161325 (2015) | Download Citation

Abstract

Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation–positive Burkitt lymphoma, nine BCL2 translocation–positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

European Nucleotide Archive

References

  1. 1.

    et al. DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation. Genome Res. 23, 2030–2041 (2013).

  2. 2.

    et al. A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res. 40, 11339–11351 (2012).

  3. 3.

    et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 118, 3559–3569 (2011).

  4. 4.

    & Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 15, 172–184 (2015).

  5. 5.

    & Aggressive lymphomas. N. Engl. J. Med. 362, 1417–1429 (2010).

  6. 6.

    & Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

  7. 7.

    et al. Molecular diagnosis of Burkitt's lymphoma. N. Engl. J. Med. 354, 2431–2442 (2006).

  8. 8.

    et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet. 44, 1316–1320 (2012).

  9. 9.

    et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490, 116–120 (2012).

  10. 10.

    et al. Genomic and epigenomic co-evolution in follicular lymphomas. Leukemia 29, 456–463 (2015).

  11. 11.

    et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

  12. 12.

    et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

  13. 13.

    et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46, 176–181 (2014).

  14. 14.

    et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

  15. 15.

    et al. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120, 2240–2248 (2012).

  16. 16.

    , & Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics 28, 1698–1704 (2012).

  17. 17.

    et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

  18. 18.

    et al. Loss of the Polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Cancer Res. 74, 3617–3629 (2014).

  19. 19.

    et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).

  20. 20.

    et al. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 15, 104–115 (2009).

  21. 21.

    et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 354, 2419–2430 (2006).

  22. 22.

    et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 44, 1321–1325 (2012).

  23. 23.

    et al. Loss of signalling via Galpha13 in germinal centre B-cell–derived lymphoma. Nature 516, 254–258 (2014).

  24. 24.

    et al. Recurrent RHOA mutations in pediatric Burkitt lymphoma treated according to the NHL-BFM protocols. Genes Chromosom. Cancer 53, 911–916 (2014).

  25. 25.

    et al. The emerging mutational landscape of G proteins and G-protein–coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 (2013).

  26. 26.

    et al. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1—Jekyll hidden behind Hyde. Am. J. Cancer Res. 1, 460–481 (2011).

  27. 27.

    et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122, 1256–1265 (2013).

  28. 28.

    , , & Dynamic regulation of epigenomic landscapes during hematopoiesis. BMC Genomics 14, 193 (2013).

  29. 29.

    et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc. Natl. Acad. Sci. USA 104, 5389–5394 (2007).

  30. 30.

    et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497, 624–627 (2013).

  31. 31.

    et al. Patient age at diagnosis is associated with the molecular characteristics of diffuse large B-cell lymphoma. Blood 119, 1882–1887 (2012).

  32. 32.

    et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am. J. Surg. Pathol. 35, 933–935 (2011).

  33. 33.

    et al. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol. 128, 453–456 (2014).

  34. 34.

    et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am. J. Hum. Genet. 86, 279–284 (2010).

  35. 35.

    et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet. 46, 438–443 (2014).

  36. 36.

    et al. Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions. Nucleic Acids Res. 43, e10 (2015).

  37. 37.

    et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 47, 746–756 (2015).

  38. 38.

    et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

  39. 39.

    et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).

  40. 40.

    & Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  41. 41.

    et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet. 45, 927–932 (2013).

  42. 42.

    et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014).

  43. 43.

    et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol. 5, e1000502 (2009).

  44. 44.

    & Model selection for high-dimensional, multisequence change-point problems. Stat. Sin. 22, 1507 (2012).

  45. 45.

    & Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

  46. 46.

    et al. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 42, D764–D770 (2014).

  47. 47.

    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  48. 48.

    et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).

  49. 49.

    & ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

  50. 50.

    et al. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005).

  51. 51.

    et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics 47, 5.6.1–5.6.32 (2006).

  52. 52.

    et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl. Acad. Sci. USA 100, 2243–2248 (2003).

  53. 53.

    et al. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96–S104 (2002).

  54. 54.

    et al. Pathway activation patterns in diffuse large B-cell lymphomas. Leukemia 22, 1746–1754 (2008).

  55. 55.

    et al. A gene expression–based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 100, 9991–9996 (2003).

Download references

Acknowledgements

This study has been supported by the German Ministry of Science and Education (BMBF) in the framework of the ICGC MMML-Seq project (01KU1002A-J) and the MMML-MYC-SYS project (036166B), the European Union in the framework of the BLUEPRINT Project (HEALTH-F5-2011-282510) and the KinderKrebsInitiative Buchholz/Holm-Seppensen and LIFE (Leipzig Research Center for Civilization Diseases), Leipzig University. LIFE is funded by the European Union, the European Regional Development Fund (ERDF), the European Social Fund (ESF) and the Free State of Saxony. WGBS was additionally supported by NGFNplus (BMBF, 01GS0883) and the DKFZ–Heidelberg Center for Personalized Oncology (DKFZ-HIPO). Former grant support of MMML by the Deutsche Krebshilfe (2003–2011) is gratefully acknowledged. J.R. is supported by the Dr. Werner Jackstädt Foundation in the framework of a Junior Excellence Research Group on 'Mechanisms of B-Cell Lymphomagenesis in the Senium as Basic Principle for the Development of Age-Adjusted Therapy Regimes' (S134-10.100).

Author information

Author notes

    • Helene Kretzmer
    • , Stephan H Bernhart
    • , Wei Wang
    • , Andrea Haake
    • , Marc A Weniger
    •  & Anke K Bergmann

    These authors contributed equally to this work.

    • Ralf Küppers
    • , Ole Ammerpohl
    • , Peter Lichter
    • , Reiner Siebert
    • , Steve Hoffmann
    •  & Bernhard Radlwimmer

    These authors jointly supervised this work.

Affiliations

  1. Transcriptome Bioinformatics, Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany.

    • Helene Kretzmer
    • , Stephan H Bernhart
    • , Gero Doose
    • , Frank Jühling
    • , Christian Otto
    • , Peter F Stadler
    •  & Steve Hoffmann
  2. Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.

    • Helene Kretzmer
    • , Stephan H Bernhart
    • , Gero Doose
    • , Frank Jühling
    • , Christian Otto
    • , Peter F Stadler
    •  & Steve Hoffmann
  3. Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.

    • Helene Kretzmer
    • , Stephan H Bernhart
    • , Gero Doose
    • , Frank Jühling
    • , Christian Otto
    • , Peter F Stadler
    •  & Steve Hoffmann
  4. Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

    • Wei Wang
    • , Volker Hovestadt
    • , Simone Picelli
    • , Peter Lichter
    •  & Bernhard Radlwimmer
  5. Institute of Human Genetics, Christian Albrechts University, Kiel, Germany.

    • Andrea Haake
    • , Anke K Bergmann
    • , Jana Gutwein
    • , Julia Richter
    • , Julia Kolarova
    • , Rabea Wagener
    • , Cristina López
    • , Inga Nagel
    • , Inga Vater
    • , Ole Ammerpohl
    •  & Reiner Siebert
  6. Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Kiel, Germany.

    • Marc A Weniger
    •  & Ralf Küppers
  7. Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.

    • Anke K Bergmann
    •  & Alexander Claviez
  8. Cell Networks, Bioquant, University of Heidelberg, Heidelberg, Germany.

    • Matthew J Betts
    • , Qianhao Lu
    •  & Robert B Russell
  9. Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

    • Enrique Carrillo-de-Santa-Pau
    •  & Daniel Rico
  10. Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

    • Bingding Huang
    • , Roland Eils
    • , Chris Lawerenz
    •  & Matthias Schlesner
  11. Department of Otorhinolaryngology, University of Duisburg-Essen, Essen, Germany.

    • Judith Arnolds
  12. Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany.

    • Birgit Burkhardt
  13. Leibniz Institut, German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany.

    • Hans G Drexler
    • , Sonja Eberth
    •  & Roderick A F MacLeod
  14. Department of Hematology and Oncology, Georg Augusts University of Göttingen, Göttingen, Germany.

    • Sonja Eberth
    •  & Lorenz Trümper
  15. Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany.

    • Roland Eils
  16. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK.

    • Paul Flicek
  17. Friedrich Ebert Hospital Neumünster, Clinics for Haematology, Oncology and Nephrology, Neumünster, Germany.

    • Siegfried Haas
  18. Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany.

    • Michael Hummel
    •  & Dido Lenze
  19. Hematology and Oncology, Department of Internal Medicine II, University Medical Centre, Campus Kiel, Kiel, Germany.

    • Dennis Karsch
  20. Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen, the Netherlands.

    • Hinrik H D Kerstens
    • , Joost H A Martens
    • , Marta Kulis
    • , Monika Szczepanowski
    •  & Hendrik G Stunnenberg
  21. Hematopathology Section, Christian Albrechts University, Kiel, Germany.

    • Wolfram Klapper
  22. Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.

    • Markus Kreuz
    • , Markus Loeffler
    •  & Maciej Rosolowski
  23. Departamento de Anatomía Patológica, Farmacología y Microbiología, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

    • José Ignacio Martín-Subero
  24. Institute of Pathology, Medical Faculty of the Ulm University, Ulm, Germany.

    • Peter Möller
  25. Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany.

    • Marius Rohde
  26. Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany.

    • Philip Rosenstiel
    •  & Markus Schilhabel
  27. RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.

    • Peter F Stadler
  28. Santa Fe Institute, Santa Fe, New Mexico, USA.

    • Peter F Stadler
  29. Max Planck Institute for Mathematics in Sciences, Leipzig, Germany.

    • Peter F Stadler

Consortia

  1. ICGC MMML-Seq project

    A full list of members and affiliations appears in the Supplementary Note.

  2. BLUEPRINT project

    A full list of members and affiliations appears in the Supplementary Note.

Authors

  1. Search for Helene Kretzmer in:

  2. Search for Stephan H Bernhart in:

  3. Search for Wei Wang in:

  4. Search for Andrea Haake in:

  5. Search for Marc A Weniger in:

  6. Search for Anke K Bergmann in:

  7. Search for Matthew J Betts in:

  8. Search for Enrique Carrillo-de-Santa-Pau in:

  9. Search for Gero Doose in:

  10. Search for Jana Gutwein in:

  11. Search for Julia Richter in:

  12. Search for Volker Hovestadt in:

  13. Search for Bingding Huang in:

  14. Search for Daniel Rico in:

  15. Search for Frank Jühling in:

  16. Search for Julia Kolarova in:

  17. Search for Qianhao Lu in:

  18. Search for Christian Otto in:

  19. Search for Rabea Wagener in:

  20. Search for Judith Arnolds in:

  21. Search for Birgit Burkhardt in:

  22. Search for Alexander Claviez in:

  23. Search for Hans G Drexler in:

  24. Search for Sonja Eberth in:

  25. Search for Roland Eils in:

  26. Search for Paul Flicek in:

  27. Search for Siegfried Haas in:

  28. Search for Michael Hummel in:

  29. Search for Dennis Karsch in:

  30. Search for Hinrik H D Kerstens in:

  31. Search for Wolfram Klapper in:

  32. Search for Markus Kreuz in:

  33. Search for Chris Lawerenz in:

  34. Search for Dido Lenze in:

  35. Search for Markus Loeffler in:

  36. Search for Cristina López in:

  37. Search for Roderick A F MacLeod in:

  38. Search for Joost H A Martens in:

  39. Search for Marta Kulis in:

  40. Search for José Ignacio Martín-Subero in:

  41. Search for Peter Möller in:

  42. Search for Inga Nagel in:

  43. Search for Simone Picelli in:

  44. Search for Inga Vater in:

  45. Search for Marius Rohde in:

  46. Search for Philip Rosenstiel in:

  47. Search for Maciej Rosolowski in:

  48. Search for Robert B Russell in:

  49. Search for Markus Schilhabel in:

  50. Search for Matthias Schlesner in:

  51. Search for Peter F Stadler in:

  52. Search for Monika Szczepanowski in:

  53. Search for Lorenz Trümper in:

  54. Search for Hendrik G Stunnenberg in:

  55. Search for Ralf Küppers in:

  56. Search for Ole Ammerpohl in:

  57. Search for Peter Lichter in:

  58. Search for Reiner Siebert in:

  59. Search for Steve Hoffmann in:

  60. Search for Bernhard Radlwimmer in:

Contributions

A.H., O.A., R.K., P.L., R.S., S. Hoffmann and B.R. conceived and designed the experiments. W.W., A.H., A.K.B., J.G., J.R., J.K., R.W., S.E., H.H.D.K., W.K., D.L., C. López, S.P., I.V., P.R., M. Schilhabel, M. Szczepanowski, L.T. and R.K. performed the experiments. H.K., S.H.B., M.J.B., B.H., R.E., P.F., C. Lawerenz, J.H.A.M., M. Schlesner, P.F.S., H.G.S. and S. Hoffmann performed statistical analysis. H.K., S.H.B., G.D., V.H., D.R., F.J., C.O., M.H., M. Kreuz, M. Kulis, I.N., M. Rosolowski, R.B.R., M. Schlesner, S. Hoffmann and B.R. analyzed the data. H.K., M.A.W., M.J.B., E.C.-d.-S.-P., G.D., B.H., F.J., Q.L., C.O., J.A., B.B., A.C., H.G.D., S.E., R.E., P.F., S. Haas, D.K., H.H.D.K., W.K., M. Kreuz, C. Lawerenz, D.L., M.L., R.A.F.M., J.H.A.M., J.I.M.-S., P.M., M. Rohde, P.R., M. Schilhabel, M. Schlesner, L.T., H.G.S. and S. Hoffmann contributed reagents, materials and/or analysis tools. H.K., S.H.B., W.W., A.H., P.L., R.S., S. Hoffmann and B.R. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Reiner Siebert or Steve Hoffmann or Bernhard Radlwimmer.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Note, Supplementary Figures 1–23 and Supplementary Tables 1–4, 6, 9–11, 13, 14 and 16–18.

Excel files

  1. 1.

    Supplementary Table 5

    Statistics of whole-genome sequencing.

  2. 2.

    Supplementary Table 7

    Annotation of DMRs.

  3. 3.

    Supplementary Table 8

    Correlating DMRs.

  4. 4.

    Supplementary Table 12

    Statistics of transcriptome arrays.

  5. 5.

    Supplementary Table 15

    SWI/SNF SNVs.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.3413

Further reading

  • Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation

    • Arie B. Brinkman
    • , Serena Nik-Zainal
    • , Femke Simmer
    • , F. Germán Rodríguez-González
    • , Marcel Smid
    • , Ludmil B. Alexandrov
    • , Adam Butler
    • , Sancha Martin
    • , Helen Davies
    • , Dominik Glodzik
    • , Xueqing Zou
    • , Manasa Ramakrishna
    • , Johan Staaf
    • , Markus Ringnér
    • , Anieta Sieuwerts
    • , Anthony Ferrari
    • , Sandro Morganella
    • , Thomas Fleischer
    • , Vessela Kristensen
    • , Marta Gut
    • , Marc J. van de Vijver
    • , Anne-Lise Børresen-Dale
    • , Andrea L. Richardson
    • , Gilles Thomas
    • , Ivo G. Gut
    • , John W. M. Martens
    • , John A. Foekens
    • , Michael R. Stratton
    •  & Hendrik G. Stunnenberg

    Nature Communications (2019)

  • Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma

    • Cristina López
    • , Kortine Kleinheinz
    • , Sietse M. Aukema
    • , Marius Rohde
    • , Stephan H. Bernhart
    • , Daniel Hübschmann
    • , Rabea Wagener
    • , Umut H. Toprak
    • , Francesco Raimondi
    • , Markus Kreuz
    • , Sebastian M. Waszak
    • , Zhiqin Huang
    • , Lina Sieverling
    • , Nagarajan Paramasivam
    • , Julian Seufert
    • , Stephanie Sungalee
    • , Robert B. Russell
    • , Julia Bausinger
    • , Helene Kretzmer
    • , Ole Ammerpohl
    • , Anke K. Bergmann
    • , Hans Binder
    • , Arndt Borkhardt
    • , Benedikt Brors
    • , Alexander Claviez
    • , Gero Doose
    • , Lars Feuerbach
    • , Andrea Haake
    • , Martin-Leo Hansmann
    • , Jessica Hoell
    • , Michael Hummel
    • , Jan O. Korbel
    • , Chris Lawerenz
    • , Dido Lenze
    • , Bernhard Radlwimmer
    • , Julia Richter
    • , Philip Rosenstiel
    • , Andreas Rosenwald
    • , Markus B. Schilhabel
    • , Harald Stein
    • , Stephan Stilgenbauer
    • , Peter F. Stadler
    • , Monika Szczepanowski
    • , Marc A. Weniger
    • , Marc Zapatka
    • , Roland Eils
    • , Peter Lichter
    • , Markus Loeffler
    • , Peter Möller
    • , Lorenz Trümper
    • , Wolfram Klapper
    • , Steve Hoffmann
    • , Ralf Küppers
    • , Birgit Burkhardt
    • , Matthias Schlesner
    •  & Reiner Siebert

    Nature Communications (2019)

  • Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten

    • Shalima S. Nair
    • , Phuc-Loi Luu
    • , Wenjia Qu
    • , Madhavi Maddugoda
    • , Lily Huschtscha
    • , Roger Reddel
    • , Georgia Chenevix-Trench
    • , Martina Toso
    • , James G. Kench
    • , Lisa G. Horvath
    • , Vanessa M. Hayes
    • , Phillip D. Stricker
    • , Timothy P. Hughes
    • , Deborah L. White
    • , John E. J. Rasko
    • , Justin J.-L. Wong
    •  & Susan J. Clark

    Epigenetics & Chromatin (2018)

  • From genetics to the clinic: a translational perspective on follicular lymphoma

    • Sarah Huet
    • , Pierre Sujobert
    •  & Gilles Salles

    Nature Reviews Cancer (2018)

  • Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma

    • Cliff I. Oduor
    • , Yasin Kaymaz
    • , Kiprotich Chelimo
    • , Juliana A. Otieno
    • , John Michael Ong’echa
    • , Ann M. Moormann
    •  & Jeffrey A. Bailey

    BMC Cancer (2017)