Abstract
Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10−14), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Effect of women’s fertility and sexual development on epigenetic clock: Mendelian randomization study
Clinical Epigenetics Open Access 28 September 2023
-
Mechanisms of ovarian aging in women: a review
Journal of Ovarian Research Open Access 06 April 2023
-
Landscape of pathogenic mutations in premature ovarian insufficiency
Nature Medicine Open Access 02 February 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Hartge, P. Genetics of reproductive lifespan. Nat. Genet. 41, 637–638 (2009).
Lambalk, C.B., van Disseldorp, J., de Koning, C.H. & Broekmans, F.J. Testing ovarian reserve to predict age at menopause. Maturitas 63, 280–291 (2009).
te Velde, E.R. & Pearson, P.L. The variability of female reproductive ageing. Hum. Reprod. Update 8, 141–154 (2002).
Stolk, L. et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat. Genet. 44, 260–268 (2012).
Perry, J.R. et al. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Hum. Mol. Genet. 23, 2490–2497 (2014).
Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. doi:10.1038/ng.3404 (28 September 2015).
Oktem, O. & Oktay, K. The ovary: anatomy and function throughout human life. Ann. NY Acad. Sci. 1127, 1–9 (2008).
Guler, G.D. et al. Human DNA helicase B (HDHB) binds to replication protein A and facilitates cellular recovery from replication stress. J. Biol. Chem. 287, 6469–6481 (2012).
Weischer, M., Bojesen, S.E., Ellervik, C., Tybjaerg-Hansen, A. & Nordestgaard, B.G. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 26, 542–548 (2008).
AlAsiri, S. et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J. Clin. Invest. 125, 258–262 (2015).
Fogli, A. et al. Ovarian failure related to eukaryotic initiation factor 2B mutations. Am. J. Hum. Genet. 72, 1544–1550 (2003).
Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).
Mandon-Pépin, B. et al. Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur. J. Endocrinol. 158, 107–115 (2008).
Linder, B. et al. Tdrd3 is a novel stress granule–associated protein interacting with the Fragile-X syndrome protein FMRP. Hum. Mol. Genet. 17, 3236–3246 (2008).
Eicher, J.D. et al. GRASP v2.0: an update on the Genome-Wide Repository of Associations between SNPs and phenotypes. Nucleic Acids Res. 43, D799–D804 (2015).
Morris, D.H. et al. Body mass index, exercise, and other lifestyle factors in relation to age at natural menopause: analyses from the Breakthrough Generations study. Am. J. Epidemiol. 175, 998–1005 (2012).
Perry, J.R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).
Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 13, 1141–1151 (2012).
Vimaleswaran, K.S. et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 2, 719–729 (2014).
Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361 (2013).
Dickson, S.P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D.B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).
Monteiro, A.N. & Freedman, M.L. Lessons from postgenome-wide association studies: functional analysis of cancer predisposition loci. J. Intern. Med. 274, 414–424 (2013).
Ghoussaini, M., Pharoah, P.D. & Easton, D.F. Inherited genetic susceptibility to breast cancer: the beginning of the end or the end of the beginning? Am. J. Pathol. 183, 1038–1051 (2013).
Titus, S. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 5, 172ra21 (2013).
Fan, S. et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284, 1354–1356 (1999).
Hu, Y. et al. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation–induced nuclear foci. Genes Dev. 25, 685–700 (2011).
Tsutsui, Y. et al. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet. 10, e1004542 (2014).
Simandlova, J. et al. FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells. J. Biol. Chem. 288, 34168–34180 (2013).
Chapman, J.R., Taylor, M.R. & Boulton, S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).
Wood-Trageser, M.A. et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am. J. Hum. Genet. 95, 754–762 (2014).
Oktay, K., Kim, J.Y., Barad, D. & Babayev, S.N. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J. Clin. Oncol. 28, 240–244 (2010).
Collins, I.M. et al. Do BRCA1 and BRCA2 mutation carriers have earlier natural menopause than their noncarrier relatives? Results from the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. J. Clin. Oncol. 31, 3920–3925 (2013).
Manson, J.E. et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women's Health Initiative randomized trials. J. Am. Med. Assoc. 310, 1353–1368 (2013).
Levy-Lahad, E. & Friedman, E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer 96, 11–15 (2007).
Rance, N.E. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30, 111–122 (2009).
Silveira, L.F. & Latronico, A.C. Approach to the patient with hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 98, 1781–1788 (2013).
García-Ortega, J. et al. Expression of neurokinin B/NK3 receptor and kisspeptin/KISS1 receptor in human granulosa cells. Hum. Reprod. 29, 2736–2746 (2014).
Gaytan, F. et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology 155, 3088–3097 (2014).
Jackson, S.P. & Bartke, J. The DNA damage response in human biology and disease. Nature 461, 1071–1078 (2009).
Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Zhou, J.J. et al. A comparative analysis of family-based and population-based association tests using whole genome sequence data. BMC Proc. 8, S33 (2014).
Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).
Zhang, X. et al. Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs. BMC Genomics 15, 532 (2014).
Segrè, A.V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).
Hoffman, M.M. et al. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41, 827–841 (2013).
Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).
1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
Eeles, R.A. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 45, 385–391 (2013).
Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. doi:10.1038/ng.3406 (28 September 2015).
Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).
Acknowledgements
For full acknowledgments, see the Supplementary Note.
Author information
Authors and Affiliations
Consortia
Contributions
All authors reviewed the original and revised manuscripts. Statistical analysis: F.R.D., K.S.R., D.J.T., K.L.L., N.P., D.I.C., L.S., H.K.F., P.S., B.B.-S., T.E., A.D.J., C.E.E., N.F., C. He, E. Altmaier, J.A.B., L.L.F., J.E.H., S.E.J., M.F.K., P.F.M., T.N., E.P., A. Robino, L.M.R., U.M.S., J.A.S., A.T., M.T., D. Vuckovic, J.Y., W. Zhao, E. Albrecht, N.A., T.C., J.-J.H., M.M., A.V.S., T. Tanaka, J.R.B.P. Sample collection, genotyping and phenotyping: G.R.A., I.L.A., H.A.-C., A.C.A., V.A., A.M.A., C. Barbieri, M.W.B., A.B.-F., J.B., L.B., S.J.B., C. Blomqvist, E.B., N.V.B., S.E.B., M.K.B., A.-L.B.-D., T.S.B., H. Brauch, H. Brenner, T.B., B.B., A. Campbell, H.C., S.J.C., J.R.C., Y.-D.I.C., G.C.-T., F.J.C., A.D.C., A. Cox, K.C., H.D., I.D.V., E.W.D., J.D., P.D., T.D., I.d.-S.-S., A.M.D., J.D.E., P.A.F., J.D.F., J.F., D.F.-J., I.G., M.E.G., M.G.-C., G.G. Giles, G.G. Girotto, M.S.G., A.G.-N., M.O.G., M.L.G., D.F.G., P.G., X.G., C.A.H., P.H., U.H., B.E.H., L.J.H., A.H., G.H., M.J.H., J.L.H., F.B.H., J.H., K.H., D.J.H., A.J., M.K., D.K., J.A.K., I.K., C.K., V.-M.K., J.K., V.K., D.L., C.L., J. Li, X.L., S.L., Y.L., J. Luan, J. Lubinski, R.M., A. Mannermaa, J. Manz, S.M., J. Marten, N.G.M., C.M., A. Meindl, K.M., E.M., L.M., R.L.M., M.M.-N., M.N., B.M.N., H.N., P.N., A.B.N., B.G.N., J.E.O., S.P., P.P., U.P., A. Petersmann, J.P., P.D.P.P., N.N.P., A. Pirie, G.P., O.P., D.P., B.M.P., K.P., P.R., L.J.R., F.R., I.R., A. Rudolph, D.R., C.F.S., S.S., E.J.S., D. Schlessinger, M.K.S., F.S., R.K.S., M.J.S., R.A.S., C.M.S., J.S., R.S., M.C.S., D. Stöckl, K. Strauch, A.S., K.D.T., U.T., A.E.T., I.T., T. Truong, L.T., S.T.T., D. Vozzi, Q.W., M.W., G.W., J.F.W., R.W., B.B.H.R.W., A.F.W., D.Y., T.Z., W. Zheng, M.Z. Individual study principal investigators: S.B., D.I.B., J.E.B., L.F., G.W.M., V.G., T.D.S., C.M.v.D., B.Z.A., M.C., L.C., D.F.E., P.P.G., C.G., T.B.H., C. Hayward, S.L.R.K., P.K., B.M., A. Metspalu, A.C.M., A.P.R., P.M.R., J.I.R., D.T., A.G.U., S.U., H.V., N.J.W., D.R.W., L.M.Y.-A., A.L.P., K. Stefansson, J.A.V., K.K.O., J.C.-C., J.M.M., A. Murray. Working group: F.R.D., K.S.R., D.J.T., K.L.L., N.P., D.I.C., L.S., H.K.F., P.S., B.B.-S., T.E., A.D.J., C.E.E., N.F., C. He, A.L.P., K. Stefansson, J.A.V., K.K.O., J.C.-C., J.M.M., J.R.B.P., A. Murray.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
A full list of members and affiliations appears in the Supplementary Note.
A full list of members and affiliations appears in the Supplementary Note.
A full list of members and affiliations appears in the Supplementary Note.
A full list of members and affiliations appears in the Supplementary Note.
A full list of members and affiliations appears in the Supplementary Note.
A full list of members and affiliations appears in the Supplementary Note.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–5 and Supplementary Note. (PDF 2060 kb)
Supplementary Tables 1–27
Supplementary Tables 1–27. (XLSX 804 kb)
Rights and permissions
About this article
Cite this article
Day, F., Ruth, K., Thompson, D. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 47, 1294–1303 (2015). https://doi.org/10.1038/ng.3412
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.3412
This article is cited by
-
Mechanisms of ovarian aging in women: a review
Journal of Ovarian Research (2023)
-
Effect of women’s fertility and sexual development on epigenetic clock: Mendelian randomization study
Clinical Epigenetics (2023)
-
Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency
Nature Medicine (2023)
-
Landscape of pathogenic mutations in premature ovarian insufficiency
Nature Medicine (2023)
-
Lessons learned during the process of reporting individual genomic results to participants of a population-based biobank
European Journal of Human Genetics (2023)