Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas

Abstract

While investigating cohorts of unclassified sarcomas by RNA sequencing, we identified 19 cases with inactivation of SMARCA4, which encodes an ATPase subunit of BAF chromatin-remodeling complexes1,2. Clinically, the cases were all strikingly similar, presenting as compressive mediastino-pulmonary masses in 30- to 35-year-old adults with a median survival time of 7 months. To help define the nosological relationships of these tumors, we compared their transcriptomic profiles with those of SMARCA4-mutated small-cell carcinomas of the ovary, hypercalcemic type (SCCOHTs)3,4,5, SMARCB1-inactivated malignant rhabdoid tumors6 (MRTs) and lung carcinomas (of which 10% display SMARCA4 mutations7). Gene profiling analyses demonstrated that these tumors were distinct from lung carcinomas but related to MRTs and SCCOHTs. Transcriptome analyses, further validated by immunohistochemistry, highlighted strong expression of SOX2, a marker that supports the differential diagnosis of these tumors from SMARCA4-deficient lung carcinomas. The prospective recruitment of cases confirmed this new category of 'SMARCA4-deficient thoracic sarcomas' as readily recognizable in clinical practice, providing opportunities to tailor their therapeutic management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prototypical features of SMARCA4-deficient thoracic sarcomas.
Figure 2: Transcriptomic classification of SMARCA4-DTSs.
Figure 3: Characterization of SMARCA4-deficient tumors.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

NCBI Reference Sequence

References

  1. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Khavari, P.A., Peterson, C.L., Tamkun, J.W., Mendel, D.B. & Crabtree, G.R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Witkowski, L. et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet. 46, 438–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Jelinic, P. et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat. Genet. 46, 424–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramos, P. et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat. Genet. 46, 427–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  8. Dykhuizen, E.C. et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497, 624–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hargreaves, D.C. & Crabtree, G.R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberts, C.W., Leroux, M.M., Fleming, M.D. & Orkin, S.H. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2, 415–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Bultman, S.J. et al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27, 460–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Witkowski, L. et al. Familial rhabdoid tumour 'avant la lettre'—from pathology review to exome sequencing and back again. J. Pathol. 231, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Hasselblatt, M. et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am. J. Surg. Pathol. 35, 933–935 (2011).

    Article  PubMed  Google Scholar 

  16. Guillou, L., Wadden, C., Coindre, J.M., Krausz, T. & Fletcher, C.D. “Proximal-type” epithelioid sarcoma, a distinctive aggressive neoplasm showing rhabdoid features. Clinicopathologic, immunohistochemical, and ultrastructural study of a series. Am. J. Surg. Pathol. 21, 130–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. French, C.A. et al. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am. J. Pathol. 159, 1987–1992 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Modena, P. et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 65, 4012–4019 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Le Loarer, F. et al. Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material. Genes Chromosom. Cancer 53, 475–486 (2014).

    Article  PubMed  Google Scholar 

  21. Sullivan, L.M., Folpe, A.L., Pawel, B.R., Judkins, A.R. & Biegel, J.A. Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod. Pathol. 26, 385–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seo, J.S. et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22, 2109–2119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsubara, D. et al. Lung cancer with loss of BRG1/BRM, shows epithelial mesenchymal transition phenotype and distinct histologic and genetic features. Cancer Sci. 104, 266–273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fukuoka, J. et al. Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non–small cell lung cancer. Clin. Cancer Res. 10, 4314–4324 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Orvis, T. et al. BRG1/SMARCA4 inactivation promotes non–small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res. 74, 6486–6498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Calderaro, J. et al. SMARCB1/INI1 inactivation in renal medullary carcinoma. Histopathology 61, 428–435 (2012).

    Article  PubMed  Google Scholar 

  28. Torchia, J. et al. Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol. 16, 569–582 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben-Porath, I. et al. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leis, O. et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 31, 1354–1365 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Kadoch, C. & Crabtree, G.R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferri, A.L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doan, D.N. et al. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 23, 3462–3473 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Wilson, B.G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, X. et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res. 69, 8094–8101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kahali, B. et al. The silencing of the SWI/SNF subunit and anticancer gene BRM in Rhabdoid tumors. Oncotarget 5, 3316–3332 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hoffman, G.R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl. Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oike, T. et al. A synthetic lethality–based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Ortmann, C.A. et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372, 601–612 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Hasselblatt, M. et al. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol. 128, 453–456 (2014).

    Article  PubMed  Google Scholar 

  44. Brennan, B., Stiller, C. & Bourdeaut, F. Extracranial rhabdoid tumours: what we have learned so far and future directions. Lancet Oncol. 14, e329–e336 (2013).

    Article  PubMed  Google Scholar 

  45. Schneppenheim, R. et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am. J. Hum. Genet. 86, 279–284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Foulkes, W.D. et al. No small surprise—small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour. J. Pathol. 233, 209–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Govindan, R. et al. Genomic landscape of non–small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pomeroy, S.L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Diskin, S.J. et al. STAC: a method for testing the significance of DNA copy number aberrations across multiple array-CGH experiments. Genome Res. 16, 1149–1158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y., Hayes, D.N., Nobel, A. & Marron, J.S. Statistical significance of clustering for high-dimension, low–sample size data. J. Am. Stat. Assoc. 103, 1281–1293 (2008).

    Article  CAS  Google Scholar 

  52. Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following pathologists who provided archival material: C. Bazille, F. Beltjens, P.P. Bringuier, J. Calderaro, L. Chalabreysse, M.C. Charpentier, M.C. Château, A. Clemenson, S. Collardeau-Frachon, S. Croce, A. Croue, F. Dauchat, A.V. Decouvelaere, P. Dorfmuller, S. Duquenne, F. Forest, S. Garcia, M.R. Ghigna, I. Goubin Versini, A. Jouvet, E. Longchamp, P. Michenet, F. Mishellany, A. Moreau, H. Perrochia, B. PetitJean, J.M. Picquenot, P. Roger, V. Secques, I. Serre, I. Soubeyran, J.P. Terrier, A. Traverse-Glehen, I. Valo and L. Zemoura. We also thank the following clinicians who provided follow-up information: D. Arpin, F. Barlesi, J.O. Bay, T. Berghmans, P. Cassier, L. Cany, D. Cupissol, L. Diaz, P. Dumont, P. Fevrier, D. Fric, E. Huchot, N. Isambert, S. Labrune, V. Laurence, D. Moro-sibilot, M. Pays, I. Ray Coquard, O. Regnard, C. Rizzo, S. Salas and P.A. Thomas. We are grateful to J. Auclair, M. Carrere, S. Chabaud, A. Colombe, V. Dapremont, V. Haddad, M. Jean-Denis, F. Lorcy, N. Mesli, J.P. Michot, D. Postoly, G. Schummer, A. Shumikhin, V. Velascoa and Q. Wang. INSERM U830 is supported by the Institut National de la Santé et de la Recherche Médicale, the Institut Curie, the Ligue National Contre Le Cancer (Equipe Labellisée), the Institut National du Cancer and la Direction Générale de l'Offre de Soins (INCa-DGOS_5716), the European PROVABES (ERA-649 NET TRANSCAN JTC-2011), ASSET (FP7-HEALTH-2010-259348) and the Euro Ewing Consortium (HEALTH-F2-2013-602856) projects. W.R. is supported by the SiRIC Institut Curie program. U830 is also indebted to the Société Française des Cancers de l'Enfant, Enfants et Santé, Courir pour Mathieu, Dans les Pas du Géant, La Course de l'Espoir du Mont Valérien, Au Nom d'Andréa, Association Abigaël, Association Marabout de Ficelle, Les Bagouz à Manon, Les Amis de Claire and Association Adam. S.W. is supported by a grant from the Fondation Nuovo-Soldati. High-throughput sequencing was performed by the next-generation sequencing platform of Institut Curie, supported by grants ANR-10-EQPX-03 and ANR-10-INBS-09-08 from the Agence Nationale de la Recherche (Investissements d'Avenir) and by Canceropôle Ile-de-France. INSERM U1052 is supported by grants from LYRIC (DGOS-INCa 4664), NetSARC (INCa), RREPS (INCa), LabEx DEvweCAN (ANR-10-LABX-0061), Eurosarc (FP7-278742) and Ligue de l'Ain Contre le Cancer.

Author information

Authors and Affiliations

Authors

Contributions

F.L.L. initiated and designed the study, collected samples, performed experiments, analyzed the data and wrote the manuscript. S.W. initiated the study, analyzed the data and helped write the manuscript. G.P. and S. Ballet provided, prepared and sequenced biological samples of unclassified sarcoma. V.T.d.M., J.M.V., F.T.-B., D.R.-V., S.L. and F.G.-S. provided samples and were the reference senior pathologists. P.J.D., M.B., M.D.-S. and J.M.C. provided samples. N.F., E.F., B.B., G.Z. and N.G. recruited patients and provided clinical information. I.T. supervised all immunohistochemical experiments. D.P., S. Boyault and S.P. performed and analyzed OncoScan experiments. W.R., J.M.-P. and F.B. provided, prepared and sequenced biological samples of MRT and epithelioid sarcoma. Y.A. provided biological samples of RMC. A.A. and A.L. provided, prepared and sequenced biological samples of SCCOHT. O.D. gave biological and genetic guidance, provided infrastructure and helped write the manuscript. J.Y.B. initiated, designed and supervised the study and helped write the manuscript. F.T. initiated, designed, coordinated and supervised the study, performed the bioinformatics analyses, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Francois Le Loarer or Franck Tirode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24, Supplementary Tables 1, 3–11 and 14, and Supplementary Note. (PDF 8262 kb)

Supplementary Table 2

Variation identified by RNA-seq. (XLSX 113 kb)

Supplementary Table 12

Genes differentially expressed between SMARCA4-DTS and lung carcinoma (SMARCA4mt). (XLSX 127 kb)

Supplementary Table 13

Genes differentially expressed between SMARCA4-DTS and US(T). (XLSX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Loarer, F., Watson, S., Pierron, G. et al. SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat Genet 47, 1200–1205 (2015). https://doi.org/10.1038/ng.3399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3399

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer