Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas

Abstract

Hepatocellular carcinomas (HCCs) are liver tumors related to various etiologies, including alcohol intake and infection with hepatitis B (HBV) or C (HCV) virus. Additional risk factors remain to be identified, particularly in patients who develop HCC without cirrhosis. We found clonal integration of adeno-associated virus type 2 (AAV2) in 11 of 193 HCCs. These AAV2 integrations occurred in known cancer driver genes, namely CCNA2 (cyclin A2; four cases), TERT (telomerase reverse transcriptase; one case), CCNE1 (cyclin E1; three cases), TNFSF10 (tumor necrosis factor superfamily member 10; two cases) and KMT2B (lysine-specific methyltransferase 2B; one case), leading to overexpression of the target genes. Tumors with viral integration mainly developed in non-cirrhotic liver (9 of 11 cases) and without known risk factors (6 of 11 cases), suggesting a pathogenic role for AAV2 in these patients. In conclusion, AAV2 is a DNA virus associated with oncogenic insertional mutagenesis in human HCC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: AAV2 integration in the TERT promoter and AAV2 mapping using viral capture.
Figure 2: AAV2 integration in CCNA2 and the consequences on gene expression.
Figure 3: AAV2 integration in TNFSF10 and the consequences on gene expression.
Figure 4: AAV2 integration in CCNE1 and KMT2B and the consequences on gene expression.
Figure 5: AAV2 inserted sequences and secondary structures of the wild-type AAV2 3′ ITR.

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

References

  1. 1

    Forner, A., Llovet, J.M. & Bruix, J. Hepatocellular carcinoma. Lancet 379, 1245–1255 (2012).

    Article  Google Scholar 

  2. 2

    Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Nault, J.C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    Article  Google Scholar 

  5. 5

    Totoki, Y. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46, 1267–1273 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Sung, W.K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Paterlini-Bréchot, P. et al. Hepatitis B virus–related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 22, 3911–3916 (2003).

    Article  Google Scholar 

  9. 9

    Nault, J.C. et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 60, 1983–1992 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Pilati, C. et al. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell 25, 428–441 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Atchison, R.W., Casto, B.C. & Hammon, W.M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965).

    CAS  Article  Google Scholar 

  12. 12

    Smith, R.H. Adeno-associated virus integration: virus versus vector. Gene Ther. 15, 817–822 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Flotte, T.R. & Berns, K.I. Adeno-associated virus: a ubiquitous commensal of mammals. Hum. Gene Ther. 16, 401–407 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Samulski, R.J. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10, 3941–3950 (1991).

    CAS  Article  Google Scholar 

  15. 15

    McAlister, V.J. & Owens, R.A. Preferential integration of adeno-associated virus type 2 into a polypyrimidine/polypurine-rich region within AAVS1. J. Virol. 81, 9718–9726 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Kotin, R.M. et al. Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 87, 2211–2215 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Deshpande, A., Sicinski, P. & Hinds, P.W. Cyclins and CDKs in development and cancer: a perspective. Oncogene 24, 2909–2915 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Berasain, C. et al. Oncogenic activation of a human cyclin A2 targeted to the endoplasmic reticulum upon hepatitis B virus genome insertion. Oncogene 16, 1277–1288 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Johnstone, R.W., Frew, A.J. & Smyth, M.J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8, 782–798 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Ding, D. et al. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing–based approach. PLoS Genet. 8, e1003065 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Gonçalves, M.A. Adeno-associated virus: from defective virus to effective vector. Virol. J. 2, 43 (2005).

    Article  Google Scholar 

  22. 22

    Neuveut, C., Wei, Y. & Buendia, M.A. Mechanisms of HBV-related hepatocarcinogenesis. J. Hepatol. 52, 594–604 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Martin, D. & Gutkind, J.S. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 27 (suppl. 2), S31–S42 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Wang, J., Chenivesse, X., Henglein, B. & Brechot, C. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343, 555–557 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Haberman, R.P., McCown, T.J. & Samulski, R.J. Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J. Virol. 74, 8732–8739 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Baudard, M. et al. Expression of the human multidrug resistance and glucocerebrosidase cDNAs from adeno-associated vectors: efficient promoter activity of AAV sequences and in vivo delivery via liposomes. Hum. Gene Ther. 7, 1309–1322 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Moore, P.S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 10, 878–889 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Calcedo, R., Vandenberghe, L.H., Gao, G., Lin, J. & Wilson, J.M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381–390 (2009).

    Article  Google Scholar 

  29. 29

    Halbert, C.L. et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors. Hum. Gene Ther. 17, 440–447 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Nathwani, A.C. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011).

    CAS  Article  Google Scholar 

  31. 31

    LeWitt, P.A. et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10, 309–319 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Donsante, A. et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Chandler, R.J. et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Invest. 125, 870–880 (2015).

    Article  Google Scholar 

  34. 34

    Wang, P.R. et al. Induction of hepatocellular carcinoma by in vivo gene targeting. Proc. Natl. Acad. Sci. USA 109, 11264–11269 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Bell, P. et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol. Ther. 14, 34–44 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Rosas, L.E. et al. Patterns of scAAV vector insertion associated with oncogenic events in a mouse model for genotoxicity. Mol. Ther. 20, 2098–2110 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Rebouissou, S. et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457, 200–204 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

  40. 40

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  41. 41

    Thorvaldsdóttir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  Google Scholar 

  42. 42

    Rebouissou, S. et al. Germline hepatocyte nuclear factor 1α and 1β mutations in renal cell carcinomas. Hum. Mol. Genet. 14, 603–614 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    CAS  Article  Google Scholar 

  47. 47

    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    CAS  PubMed  Google Scholar 

  48. 48

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  Article  Google Scholar 

  49. 49

    Hope, A.C. A simplified Monte Carolo significance test procedure. J. R. Stat. Soc., B 30, 582–598 (1968).

    Google Scholar 

Download references

Acknowledgements

We warmly thank L. Yost, E. Chevet and A. de Reynies for critical review of the manuscript and helpful discussion. We thank all the clinician surgeons and pathologists who have participated in this work: J. Saric, C. Laurent, L. Chiche, B. Le Bail and C. Castain (CHU Bordeaux) and Y. Allory, K. Leroy and D. Azoulay (CHU Henri Mondor). We also thank the Réseau National Centre de Ressources Biologiques (CRB) Foie and the tumor banks of CHU Bordeaux and CHU Henri Mondor for contributing to the tissue collection. This work was supported by Institut Nationale du Cancer (INCa) with the International Cancer Genome Consortium (ICGC) and the PAIR-CHC project NoFLIC (also funded by Association pour la Recherche sur le Cancer (ARC)). The group is supported by the Ligue Nationale contre le Cancer. J.-C.N., M.M., C.P. and A.F. were supported by fellowships from INCa, AERIO-Boehringer-Ingelheim, ARC and the Ligue Nationale contre le Cancer, respectively.

Author information

Affiliations

Authors

Contributions

J.-C.N., S.D., S.I. and J.Z.-R. designed the study and wrote the manuscript. J.Z.-R. conceived and directed the research. J.-C.N., S.D., A.F., M.M., G.C., C.P. and B.V. performed the experiments. J.-C.N., S.D., S.I., A.F., M.M., G.C., E.L., C.P., B.V., F.C. and J.Z.-R. analyzed and interpreted the data. S.I., E.L. and M.L. performed bioinformatics and statistical analysis. J.-F.B., C.B., J.C., A.L. and P.B.-S. provided essential biological resources and collected clinical data. All authors approved the final manuscript and contributed to critical revisions to its intellectual context.

Corresponding author

Correspondence to Jessica Zucman-Rossi.

Ethics declarations

Competing interests

IntegraGen performed all the next-generation sequencing, and M.L. is an employee of IntegraGen. All other authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 2. (PDF 1597 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nault, JC., Datta, S., Imbeaud, S. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet 47, 1187–1193 (2015). https://doi.org/10.1038/ng.3389

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing