Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer

Abstract

Anthracyclines are used in over 50% of childhood cancer treatment protocols1, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively2,3. Candidate gene studies have reported genetic associations with ACT4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained12,13. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10−8, odds ratio (95% confidence interval) = 4.7 (2.7–8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A pharmacogenetic association with susceptibility to ACT is situated in RARG.
Figure 2: Functional characterization of RARG Ser427Leu identifies impaired transcriptional regulation.

Similar content being viewed by others

References

  1. Smith, L.A. et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10, 337 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. van der Pal, H.J. et al. Cardiac function in 5-year survivors of childhood cancer: a long-term follow-up study. Arch. Intern. Med. 170, 1247–1255 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. van der Pal, H.J. et al. High risk of symptomatic cardiac events in childhood cancer survivors. J. Clin. Oncol. 30, 1429–1437 (2012).

    Article  PubMed  Google Scholar 

  4. Armenian, S.H. et al. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br. J. Haematol. 163, 205–213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blanco, J.G. et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 112, 2789–2795 (2008).

    Article  PubMed  Google Scholar 

  6. Blanco, J.G. et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J. Clin. Oncol. 30, 1415–1421 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Lipshultz, S.E. et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer 119, 3555–3562 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Lubieniecka, J.M. et al. A discovery study of daunorubicin induced cardiotoxicity in a sample of acute myeloid leukemia patients prioritizes P450 oxidoreductase polymorphisms as a potential risk factor. Front. Genet. 4, 231 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rajić, V. et al. Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk. Lymphoma 50, 1693–1698 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. Rossi, D. et al. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. Leukemia 23, 1118–1126 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Semsei, A.F. et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int. 36, 79–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Visscher, H. et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 30, 1422–1428 (2012).

    Article  PubMed  Google Scholar 

  13. Visscher, H. et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer 60, 1375–1381 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, X. et al. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the Children’s Oncology Group. J. Clin. Oncol. 32, 647–653 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Windsor, R.E., Strauss, S.J., Kallis, C., Wood, N.E. & Whelan, J.S. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer 118, 1856–1867 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Wojnowski, L. et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112, 3754–3762 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Volkan-Salanci, B. et al. The relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 and glutathione S transferase Pi polymorphisms. J. Chemother. 24, 285–291 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Lubieniecka, J.M. et al. Single-nucleotide polymorphisms in aldo-keto and carbonyl reductase genes are not associated with acute cardiotoxicity after daunorubicin chemotherapy. Cancer Epidemiol. Biomarkers Prev. 21, 2118–2120 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Cascales, A. et al. Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist 18, 446–453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cascales, A. et al. Clinical and genetic determinants of anthracycline-induced cardiac iron accumulation. Int. J. Cardiol. 154, 282–286 (2012).

    Article  PubMed  Google Scholar 

  21. Vivenza, D. et al. Role of the renin-angiotensin-aldosterone system and the glutathione S-transferase Mu, Pi and Theta gene polymorphisms in cardiotoxicity after anthracycline chemotherapy for breast carcinoma. Int. J. Biol. Markers 28, e336–e347 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Sachidanandam, K., Gayle, A.A., Robins, H.I. & Kolesar, J.M. Unexpected doxorubicin-mediated cardiotoxicity in sisters: possible role of polymorphisms in histamine N-methyl transferase. J. Oncol. Pharm. Pract. 19, 269–272 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Krischer, J.P. et al. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J. Clin. Oncol. 15, 1544–1552 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Hasan, S., Dinh, K., Lombardo, F. & Kark, J. Doxorubicin cardiotoxicity in African Americans. J. Natl. Med. Assoc. 96, 196–199 (2004).

    PubMed  PubMed Central  Google Scholar 

  25. Hershman, D. et al. Racial disparities in treatment and survival among women with early-stage breast cancer. J. Clin. Oncol. 23, 6639–6646 (2005).

    Article  PubMed  Google Scholar 

  26. Duan, S. et al. Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res. 67, 5425–5433 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peters, E.J. et al. Pharmacogenomic characterization of US FDA-approved cytotoxic drugs. Pharmacogenomics 12, 1407–1415 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Lipshultz, S.E., Alvarez, J.A. & Scully, R.E. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 94, 525–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Barry, E., Alvarez, J.A., Scully, R.E., Miller, T.L. & Lipshultz, S.E. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin. Pharmacother. 8, 1039–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Agarwala, S. et al. High incidence of adriamycin cardiotoxicity in children even at low cumulative doses: role of radionuclide cardiac angiography. J. Pediatr. Surg. 35, 1786–1789 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Shaikh, A.S., Saleem, A.F., Mohsin, S.S., Alam, M.M. & Ahmed, M.A. Anthracycline-induced cardiotoxicity: prospective cohort study from Pakistan. BMJ Open 3, e003663 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940–954 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Tang, Q. et al. A comprehensive view of nuclear receptor cancer cistromes. Cancer Res. 71, 6940–6947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G. & Gianni, L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, S. et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642 (2012).

    Article  PubMed  CAS  Google Scholar 

  36. Lyu, Y.L. et al. Topoisomerase IIβ mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839–8846 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bilbija, D. et al. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling. PLoS ONE 7, e44740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delacroix, L. et al. Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells. Mol. Cell. Biol. 30, 231–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Wheeler, H.E., Maitland, M.L., Dolan, M.E., Cox, N.J. & Ratain, M.J. Cancer pharmacogenomics: strategies and challenges. Nat. Rev. Genet. 14, 23–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. McLeod, H.L. Cancer pharmacogenomics: early promise, but concerted effort needed. Science 339, 1563–1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelson, M.R. et al. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J. 9, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Ortega, J.J. et al. Treatment with all-trans retinoic acid and anthracycline monochemotherapy for children with acute promyelocytic leukemia: a multicenter study by the PETHEMA Group. J. Clin. Oncol. 23, 7632–7640 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Pellicori, P., Calicchia, A., Lococo, F., Cimino, G. & Torromeo, C. Subclinical anthracycline cardiotoxicity in patients with acute promyelocytic leukemia in long-term remission after the AIDA protocol. Congest. Heart Fail. 18, 217–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Arima, K. et al. Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays. Dev. Dyn. 232, 414–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Palm-Leis, A. et al. Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes. J. Biol. Chem. 279, 54905–54917 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Simandi, Z., Balint, B.L., Poliska, S., Ruhl, R. & Nagy, L. Activation of retinoic acid receptor signaling coordinates lineage commitment of spontaneously differentiating mouse embryonic stem cells in embryoid bodies. FEBS Lett. 584, 3123–3130 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Rodvold, K.A., Rushing, D.A. & Tewksbury, D.A. Doxorubicin clearance in the obese. J. Clin. Oncol. 6, 1321–1327 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Kremer, L.C., van Dalen, E.C., Offringa, M., Ottenkamp, J. & Voute, P.A. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J. Clin. Oncol. 19, 191–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Lipshultz, S.E. et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med. 324, 808–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Lipshultz, S.E. et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med. 332, 1738–1743 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Altman, A.J. in Supportive Care of Children with Cancer: Current Therapy and Guidelines from the Children’s Oncology Group 3rd edn. (ed. Lacuone, J.) 139–148 (John Hopkins University Press, 2004).

  53. Mulrooney, D.A. et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. Br. Med. J. 339, b4606 (2009).

    Article  Google Scholar 

  54. Visscher, H. et al. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics (in the press).

  55. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Browning, S.R. & Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Visscher, H. et al. Application of principal component analysis to pharmacogenomic studies in Canada. Pharmacogenomics J. 9, 362–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the participation of all the patients and families who took part in this study across Canada, the Netherlands and the United States. This work was supported by the Canadian Institutes of Health Research (CIHR; FRN-88362 to B.C.C., M.R.H. and C.J.D.R.), the CIHR Drug Safety and Effectiveness Network (FRN-117588 to B.C.C. and C.J.D.R.), the US National Institutes of Health (1R21HL123655-01 and HL123655 to D.B., B.C.C. and C.J.D.R.), a Stanford Comprehensive Cancer Center Translation Research Grant (to D.B.), the Child & Family Research Institute (Vancouver, British Columbia, Canada; Bertram Hoffmeister Postdoctoral Fellowship Award for F.A.), the Michael Smith Foundation for Health Research (Postdoctoral Fellowship Award for F.A.), the CIHR Training Program in Bridging Scientific Domains for Drug Safety and Effectiveness–DSECT program (Postdoctoral Fellowship Award for F.A.), the Canada Foundation for Innovation, Genome British Columbia and the Provincial Health Service Authority. Additional funding was provided by the Child & Family Research Institute (Vancouver, British Columbia, Canada), the Faculty of Medicine of the University of British Columbia, the Canadian Gene Cure Foundation, the C17 Research Network and the Childhood Cancer Foundation–Candlelighters Canada.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

B.C.C., M.R.H. and C.J.D.R. conceived and supervised the study. F.A., H.V., S.R.R., H.N.C., E.C.v.D., L.C.K., H.J.v.d.P., D.B., C.J.D.R., B.C.C. and the CPNDS Consortium enrolled the patients and collected and interpreted clinical data. F.A. conceived the statistical analyses, and F.A., H.V., J.W.L., A.P.B. and C.J.D.R. performed the statistical analyses. A.P.B. conceived the experiments, and A.P.B. and Y.L. performed the experiments. F.A., A.P.B., H.V., S.R.R., J.W.L., L.R.B., U.A., H.N.C., L.C.K., E.C.v.D., H.J.v.d.P., M.J.R., D.B., B.C.C., M.R.H. and C.J.D.R. analyzed and interpreted the data. All authors contributed to the writing, review and approval of the manuscript.

Corresponding author

Correspondence to Colin J D Ross.

Ethics declarations

Competing interests

M.R.H., B.C.C., C.J.D.R., F.A., H.V. and A.P.B. have filed provisional patents based on the results of this work (US provisional patents 62/077,702 and 62/135,351).

Integrated supplementary information

Supplementary Figure 1 Study design.

Supplementary Figure 2 GWAS of anthracycline-induced cardiotoxicity in childhood cancer.

(a) Manhattan plot showing the observed distribution of –log10 (P values) against SNP chromosomal localization (GRCH37.p13). P values are for logistic regression analysis (additive model) with adjustment for age, cumulative dose, tumor type (ALL, Ewing’s sarcoma or rhabdomyosarcoma) and radiotherapy. Red line, P = 1.0 × 10–5 (ref.1). (b) Quantile-quantile plot. Quantile-quantile plot showing the distributions of observed –log10 (P values) plotted against expected –log10 (P values) (λGC = 1.021). Smaller P values than would be expected by chance were observed at the tail of the plot. λGC = 1.021 indicates no obvious population stratification.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Tables 1–7. (PDF 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminkeng, F., Bhavsar, A., Visscher, H. et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet 47, 1079–1084 (2015). https://doi.org/10.1038/ng.3374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing