Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity

Abstract

Hundreds of genes reside in structurally complex, poorly understood regions of the human genome1,2,3. One such region contains the three amylase genes (AMY2B, AMY2A and AMY1) responsible for digesting starch into sugar. Copy number of AMY1 is reported to be the largest genomic influence on obesity4, although genome-wide association studies for obesity have found this locus unremarkable. Using whole-genome sequence analysis3,5, droplet digital PCR6 and genome mapping7, we identified eight common structural haplotypes of the amylase locus that suggest its mutational history. We found that the AMY1 copy number in an individual's genome is generally even (rather than odd) and partially correlates with nearby SNPs, which do not associate with body mass index (BMI). We measured amylase gene copy number in 1,000 obese or lean Estonians and in 2 other cohorts totaling 3,500 individuals. We had 99% power to detect the lower bound of the reported effects on BMI4, yet found no association.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Copy number distributions of the amylase genes and structural haplotypes of the amylase locus.
Figure 2: Relationship of the amylase structural haplotypes to SNPs and SNP haplotypes.
Figure 3: Association analysis of AMY1 copy number with obesity or BMI in three cohorts.

References

  1. 1

    Conrad, D.F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Sudmant, P.H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Handsaker, R.E. et al. Large multiallelic copy number variations in humans. Nat. Genet. 47, 296–303 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Falchi, M. et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat. Genet. 46, 492–497 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Handsaker, R.E., Korn, J.M., Nemesh, J. & McCarroll, S.A. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet. 43, 269–276 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Hindson, B.J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Hastie, A.R. et al. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS ONE 8, e55864 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Groot, P.C. et al. The human α-amylase multigene family consists of haplotypes with variable numbers of genes. Genomics 5, 29–42 (1989).

    CAS  Article  Google Scholar 

  9. 9

    Perry, G.H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Groot, P.C., Mager, W.H. & Frants, R.R. Interpretation of polymorphic DNA patterns in the human α-amylase multigene family. Genomics 10, 779–785 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Cantsilieris, S. & White, S.J. Correlating multiallelic copy number polymorphisms with disease susceptibility. Hum. Mutat. 34, 1–13 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Barnes, C. et al. A robust statistical method for case-control association testing with copy number variation. Nat. Genet. 40, 1245–1252 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Zanda, M. et al. A genome-wide assessment of the role of untagged copy number variants in type 1 diabetes. PLoS Genet. 10, e1004367 (2014).

    Article  Google Scholar 

  16. 16

    1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  17. 17

    International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  18. 18

    Carpenter, D. et al. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum. Mol. Genet. 24, 3472–3480 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Groot, P.C. et al. Evolution of the human α-amylase multigene family through unequal, homologous, and inter- and intrachromosomal crossovers. Genomics 8, 97–105 (1990).

    CAS  Article  Google Scholar 

  20. 20

    Boettger, L.M., Handsaker, R.E., Zody, M.C. & McCarroll, S.A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881–885 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Steinberg, K.M. et al. Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nat. Genet. 44, 872–880 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Lupski, J.R. & Stankiewicz, P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. 1, e49 (2005).

    Article  Google Scholar 

  23. 23

    Leitsalu, L. et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. doi:10.1093/ije/dyt268 (2014).

  24. 24

    Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Ferrucci, L. et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J. Am. Geriatr. Soc. 48, 1618–1625 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  27. 27

    Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).

  28. 28

    Tognon, G. et al. Mediterranean diet, overweight and body composition in children from eight European countries: cross-sectional and prospective results from the IDEFICS study. Nutr. Metab. Cardiovasc. Dis. 24, 205–213 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Mottus, R. et al. Personality traits and eating habits in a large sample of Estonians. Health Psychol. 31, 806–814 (2012).

    Article  Google Scholar 

  30. 30

    Berndt, S.I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Mejía-Benítez, M.A. et al. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia 58, 290–294 (2015).

    Article  Google Scholar 

  32. 32

    Iskow, R.C., Gokcumen, O. & Lee, C. Exploring the role of copy number variants in human adaptation. Trends Genet. 28, 245–257 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Stankiewicz, P. & Lupski, J.R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Zhang, F., Gu, W., Hurles, M.E. & Lupski, J.R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Scott, L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Diabetes Genetics Initiative of Broad Institute of Harvard and MIT. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

  38. 38

    Heid, I.M. et al. Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes 55, 375–384 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Melzer, D. et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

    Article  Google Scholar 

  40. 40

    Church, D.M. et al. Modernizing reference genome assemblies. PLoS Biol. 9, e1001091 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Koren, A. et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am. J. Hum. Genet. 91, 1033–1040 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Cao, H. et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience 3, 34 (2014).

    Article  Google Scholar 

  44. 44

    Teague, B. et al. High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci. USA 107, 10848–10853 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Hach, F. et al. mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat. Methods 7, 576–577 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS  Article  Google Scholar 

  47. 47

    Alkan, C. et al. Personalized copy number and segmental duplication maps using next-generation sequencing. Nat. Genet. 41, 1061–1067 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Browning, S.R. & Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    CAS  Article  Google Scholar 

  49. 49

    Purcell, S., Cherny, S.S. & Sham, P.C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  Article  Google Scholar 

  51. 51

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

Download references

Acknowledgements

This work was supported by a grant from the National Human Genome Research Institute (R01 HG006855) to S.A.M. to support C.L.U., R.E.H. and S.A.M. Work by T.E. and A.M. was supported through the Estonian Genome Center of the University of Tartu (EGCUT) by Targeted Financing from the Estonian Ministry of Science and Education (SF0180142s08), the Development Fund of the University of Tartu (SP1GVARENG) and the European Regional Development Fund to the Centre of Excellence in Genomics (3.2.0304.11-0312) and through Framework Programme 7 grant 313010. T.E., A.M. and J.N.H. were further supported by the US National Institutes of Health (R01 DK075787). T.M.F. is supported by European Research Council funding (Framework Programme 7, SZ-50371-GLUCOSEGENES), M.A.T. and M.N.W. are supported by the Wellcome Trust Institutional Strategic Support Award (WT097835MF), and M.B. is supported by US National Institutes of Health grant DK062370.

Author information

Affiliations

Authors

Contributions

C.L.U., J.N.H. and S.A.M. conceived the project. C.L.U. pursued molecular (ddPCR) and statistical analyses of amylase locus structural variation. R.E.H. contributed analyses of whole-genome sequence data. T.E., A.M., C.L.U., J.E.M. and J.N.H. analyzed the Estonian cohort. M.A.T., M.N.W., T.M.F., R.E.H. and S.K. analyzed the InCHIANTI cohort. M.I.M., M.B., D.M.A., R.E.H., C.L.U. and C.F. analyzed the GoT2D cohort. C.N.P., M.T.P., C.L.U. and R.E.H. analyzed the GPC cohort. A.R.H. and H.C. performed the NanoChannel-based genome mapping. C.L.U., J.N.H. and S.A.M. wrote the manuscript, with contributions from D.M.A., T.M.F., M.B., M.I.M. and T.E.

Corresponding authors

Correspondence to Joel N Hirschhorn or Steven A McCarroll.

Ethics declarations

Competing interests

A.R.H. and H.C. are employees at BioNano Genomics, Inc., and own company stock options.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17. (PDF 7125 kb)

Supplementary Tables 1–14

Supplementary Tables 1–14. (XLSX 1504 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Usher, C., Handsaker, R., Esko, T. et al. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat Genet 47, 921–925 (2015). https://doi.org/10.1038/ng.3340

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing