Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Systems genetics of complex traits in Drosophila melanogaster

Abstract

Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight into the molecular basis of pleiotropy between complex traits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Variation in transcript abundance among 40 wild-derived inbred lines.
Figure 2: Correlated transcriptional modules.
Figure 3: Biology of transcriptional modules.
Figure 4: Variation for organismal phenotypes among 40 wild-derived inbred lines.
Figure 5: Distribution of SFP effects.
Figure 6: Effects of P-element mutations in candidate genes affecting quantitative traits.
Figure 7: Modules of correlated transcripts associated with organismal phenotypes.
Figure 8: Pleiotropy between phenotypic modules.

Accession codes

Accessions

ArrayExpress

References

  1. Falconer, D.S. & Mackay, T.F.C. Introduction to Quantitative Genetics (Addison Wesley Longman, Harlow, Essex, UK, 1996).

    Google Scholar 

  2. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998).

    Google Scholar 

  3. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 44, 66–678 (2007).

  4. Mackay, T.F.C. & Anholt, R.R.H. Of flies and man: Drosophila as a model for human complex traits. Annu. Rev. Genomics Hum. Genet. 7, 339–367 (2006).

    CAS  Article  Google Scholar 

  5. Valdar, W. et al. Genetic and environmental effects on complex traits in mice. Genetics 174, 959–984 (2006).

    CAS  Article  Google Scholar 

  6. Sieberts, S.K. & Schadt, E.E. Moving toward a system genetics view of disease. Mamm. Genome 18, 389–401 (2007).

    Article  Google Scholar 

  7. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    CAS  Article  Google Scholar 

  8. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    CAS  Article  Google Scholar 

  9. Rollmann, S.M. et al. Pleiotropic fitness effects of the Tre1/Gr5a region in Drosophila. Nat. Genet. 38, 824–829 (2006).

    CAS  Article  Google Scholar 

  10. Sambandan, D., Yamamoto, A., Fanara, J.J., Mackay, T.F.C. & Anholt, R. R. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 174, 1349–1363 (2006).

    CAS  Article  Google Scholar 

  11. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  Article  Google Scholar 

  12. Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).

    CAS  Article  Google Scholar 

  13. Zhang, Y., Sturgill, D., Parisi, M., Kumar, S. & Oliver, B. Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450, 233–237 (2007).

    CAS  Article  Google Scholar 

  14. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

  15. Sturgill, D., Zhang, Y., Parisi, M. & Oliver, B. Demasculinization of X chromosomes in the Drosophila genus. Nature 450, 238–241 (2007).

    CAS  Article  Google Scholar 

  16. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 45, 203–218 (2007).

  17. Mackay, T.F.C. et al. Genetics and genomics of Drosophila mating behavior. Proc. Natl. Acad. Sci. USA 102, 6622–6629 (2005).

    CAS  Article  Google Scholar 

  18. Edwards, A.C., Rollmann, S.M., Morgan, T.J. & Mackay, T.F.C. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet. 2, e154 (2006).

    Article  Google Scholar 

  19. Jordan, K.W., Carbone, M.A., Yamamoto, A., Morgan, T.J. & Mackay, T.F.C. Quantitative genomics of locomotor behavior in Drosophila melanogaster. Genome Biol. 8, R172 (2007).

    Article  Google Scholar 

  20. Morozova, T.V., Anholt, R.R.H. & Mackay, T.F.C. Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Genome Biol. 8, R231 (2007).

    Article  Google Scholar 

  21. Chintapalli, V.R., Wang, J. & Dow, J.A.T. Using FlyAtlas to identify better Drosophila models of human disease. Nat. Genet. 39, 715–720 (2007).

    CAS  Article  Google Scholar 

  22. Robertson, L.K., Bowling, D.B., Mahaffey, J.P., Imiolczyk, B. & Mahaffey, J.W. An interactive network of zinc-finger proteins contributes to regionalization of the Drosophila embryo and establishes the domains of HOM-C protein function. Development 131, 2781–2789 (2004).

    CAS  Article  Google Scholar 

  23. Wilson, R.J., Goodman, J.L. & Strelets, V.B. FlyBase: integration and improvements to query tools. Nucleic Acids Res. 36, D588–D593 (2008).

    CAS  Article  Google Scholar 

  24. Robertson, A. in Heritage From Mendel (ed. Brink, A.) 265–280 (Univ. Wisconsin, Madison, Wisconsin, 1967).

    Google Scholar 

  25. Passador-Gurgel, G., Hsieh, W.P., Hunt, P., Deighton, N. & Gibson, G. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nat. Genet. 39, 264–268 (2007).

    CAS  Article  Google Scholar 

  26. Yamamoto, A. et al. Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 105, 12393–12398 (2008).

    CAS  Article  Google Scholar 

  27. Lung, O., Kuo, L. & Wolfner, M.F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47, 617–62 (2001).

    CAS  Article  Google Scholar 

  28. Wolfner, M.F. “S.P.E.R.M.” (seminal proteins (are) essential reproductive modulators): the view from Drosophila. Soc. Reprod. Fertil. Suppl. 65, 183–199 (2007).

    CAS  PubMed  Google Scholar 

  29. Date-Ito, A., Kasahara, K., Sawai, H. & Chigusa, S.I. Rapid evolution of the male-specific antibacterial protein andropin gene in Drosophila. J. Mol. Evol. 54, 665–670 (2002).

    CAS  Article  Google Scholar 

  30. Wong, A., Turchin, M.C., Wolfner, M.F. & Aquadro, C.F. Evidence for positive selection on Drosophila melanogaster seminal fluid protease homologs. Mol. Biol. Evol. 25, 497–506 (2008).

    CAS  Article  Google Scholar 

  31. Wigby, S. & Chapman, T. Sex peptide causes mating costs in female Drosophila melanogaster. Curr. Biol. 15, 316–321 (2005).

    CAS  Article  Google Scholar 

  32. Kim, D.-H. et al. mTOR interacts with Raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    CAS  Article  Google Scholar 

  33. Kamada, Y. et al. Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr. Top. Microbiol. Immunol. 279, 73–84 (2004).

    CAS  PubMed  Google Scholar 

  34. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat. Genet. 29, 389–395 (2001).

    CAS  Article  Google Scholar 

  35. Monks, S.A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    CAS  Article  Google Scholar 

  36. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    CAS  Article  Google Scholar 

  37. Oleksiak, M.F., Churchill, G.A. & Crawford, D.L. Variation in gene expression within and among natural populations. Nat. Genet. 32, 261–266 (2002).

    CAS  Article  Google Scholar 

  38. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    CAS  Article  Google Scholar 

  39. Stranger, B.E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    Article  Google Scholar 

  40. Brem, R.B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl. Acad. Sci. USA 102, 1572–1577 (2005).

    CAS  Article  Google Scholar 

  41. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    CAS  Article  Google Scholar 

  42. Cheung, V.G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005).

    CAS  Article  Google Scholar 

  43. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005).

    CAS  Article  Google Scholar 

  44. Lemos, B., Ararope, L.O., Fontanillas, P. & Hartl, D.L. Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. Proc. Natl. Acad. Sci. USA 105, 14471–14476 (2008).

    CAS  Article  Google Scholar 

  45. Knight, G.R. & Robertson, A. Fitness as a measureable character in Drosophila. Genetics 42, 524–530 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hartl, D.L. & Jungen, H. Estimation of average fitness of populations of Drosophila melanogaster and the evolution of fitness in experimental populations. Evolution 33, 371–380 (1979).

    CAS  Article  Google Scholar 

  47. Foronda, D. et al. Requirement of Abdominal-A and Abdominal-B in the developing genitalia of Drosophila breaks the posterior downregulation rule. Development 133, 117–127 (2005).

    Article  Google Scholar 

  48. DeZazzo, J. et al. nalyot, a mutation of the Drosophila myb-related Adf1 transcription factor, disrupts synapse formation and olfactory memory. Neuron 27, 145–158 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01 GM 45146, R01 GM 076083, R01 AA016560 to T.F.C.M. and R01 GM 59469 to R.R.H.A.). The authors thank S. Heinsohn for technical assistance. This is a publication of the W. M. Keck Center for Behavioral Biology.

Author information

Authors and Affiliations

Authors

Contributions

T.F.C.M., J.F.A., E.A.S. and R.R.H.A. wrote the paper. R.F.L. constructed the Drosophila lines. M.A.C. obtained the gene expression data. K.W.J., M.M.M., S.M.R., L.H.D. and F.L. obtained the organismal phenotype data. J.F.A., E.A.S. and K.W.J. performed the statistical analyses.

Corresponding author

Correspondence to Trudy F C Mackay.

Supplementary information

Supplementary Table 1

Quantitative genetic analyses of variation for 14,480 expressed transcripts in 40 wild-derived inbred lines. Expression is measured as the median log2 intensity of PM transcripts in each probe set that do not contain SFPs. (XLS 5595 kb)

Supplementary Table 2

Over-representation of Gene Ontology Categories, KEGG Pathways and KOG Ontologies for two-fold male and female biased transcripts, transcripts with high (> 0.8) and low (< 0.2) broad sense heritabilities (H2), and transcripts with low (< 0.2) cross-sex genetic correlations (rMF). (XLS 134 kb)

Supplementary Table 3

Enrichment of transcription factor motifs in 5′ UTR sequences of genes in modules of correlated transcripts. (XLS 251 kb)

Supplementary Table 4

Quantitative genetics of organismal phenotypes for 40 wild-derived inbred lines. (PDF 157 kb)

Supplementary Table 5

Associations of SFPs with quantitative traits. (XLS 291 kb)

Supplementary Table 6

Transcripts and modules of correlated transcripts associated with each of six quantitative traits. (XLS 985 kb)

Supplementary Table 7

Effects of P[GT1] insertional mutations in candidate genes affecting resistance to starvation stress and chill coma recovery time. (XLS 96 kb)

Supplementary Table 8

Over-representation of Gene Ontology Categories, KEGG Pathways and Keywords for transcripts associated with quantitative trait phenotypes. (XLS 188 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ayroles, J., Carbone, M., Stone, E. et al. Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41, 299–307 (2009). https://doi.org/10.1038/ng.332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing