• A Corrigendum to this article was published on 29 July 2015

This article has been updated


Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments1,2. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal3,4. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP)5,6. Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis7,8. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics9,10.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Change history

  • 08 July 2015

    In the version of this article initially published, there was an error with the affiliations for author Roman Chrast. His correct affiliations are: Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. The error has been corrected in the HTML and PDF versions of the article.



  1. 1.

    & The lateralisation of pain. Pain 7, 271–280 (1979).

  2. 2.

    & Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014).

  3. 3.

    , , , & Lost productive time and cost due to common pain conditions in the US workforce. J. Am. Med. Assoc. 290, 2443–2454 (2003).

  4. 4.

    , , , & Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10, 287–333 (2006).

  5. 5.

    et al. Human Mendelian pain disorders: a key to discovery and validation of novel analgesics. Clin. Genet. 82, 367–373 (2012).

  6. 6.

    Anti-NGF painkillers back on track? Nat. Rev. Drug Discov. 11, 337–338 (2012).

  7. 7.

    & The Prdm family: expanding roles in stem cells and development. Development 139, 2267–2282 (2012).

  8. 8.

    et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 3, e3859 (2008).

  9. 9.

    , & Genes and epigenetic processes as prospective pain targets. Genome Med. 5, 12 (2013).

  10. 10.

    & Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73, 435–444 (2012).

  11. 11.

    et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

  12. 12.

    et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45, 1399–1404 (2013).

  13. 13.

    et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat. Genet. 13, 485–488 (1996).

  14. 14.

    et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum. Mol. Genet. 13, 799–805 (2004).

  15. 15.

    et al. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. J. Med. Genet. 48, 131–135 (2011).

  16. 16.

    & The other trinucleotide repeat: polyalanine expansion disorders. Curr. Opin. Genet. Dev. 15, 285–293 (2005).

  17. 17.

    et al. Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for X linked hypopituitarism. PLoS Genet. 9, e1003290 (2013).

  18. 18.

    & Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120, 3760–3772 (2010).

  19. 19.

    & The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells. Acta Neuropathol. 13, 197–216 (1969).

  20. 20.

    The neural crest and neural crest cells: discovery and significance for theories of embryonic organization. J. Biosci. 33, 781–793 (2008).

  21. 21.

    , , & Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 13, 1717–1728 (1999).

  22. 22.

    et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

  23. 23.

    et al. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol. Ther. 22, 1530–1543 (2014).

  24. 24.

    , & Prdm12b specifies the p1 progenitor domain and reveals a role for V1 interneurons in swim movements. Dev. Biol. 390, 247–260 (2014).

  25. 25.

    Induction and specification of cranial placodes. Dev. Biol. 294, 303–351 (2006).

  26. 26.

    , & Hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology. Science 297, 1355–1358 (2002).

  27. 27.

    , & Transcriptional control of Rohon-Beard sensory neuron development at the neural plate border. Dev. Dyn. 238, 931–943 (2009).

  28. 28.

    et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat. Neurosci. 15, 224–233 (2012).

  29. 29.

    , , & Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J. Biol. Chem. 287, 42995–43006 (2012).

  30. 30.

    & Prdm12 is induced by retinoic acid and exhibits anti-proliferative properties through the cell cycle modulation of P19 embryonic carcinoma cells. Cell Struct. Funct. 38, 197–206 (2013).

  31. 31.

    , & Epigenetic control on cell fate choice in neural stem cells. Protein Cell 3, 278–290 (2012).

  32. 32.

    et al. Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development 139, 3806–3816 (2012).

  33. 33.

    , & Crosstalk among epigenetic pathways regulates neurogenesis. Front. Neurosci. 6, 59 (2012).

  34. 34.

    et al. Epigenetic regulation of sensory neurogenesis in the dorsal root ganglion cell line ND7 by folic acid. Epigenetics 6, 1207–1216 (2011).

  35. 35.

    et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

  36. 36.

    et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 79, 370–377 (2006).

  37. 37.

    et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43, 595–600 (2011).

  38. 38.

    & Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 (2012).

  39. 39.

    , & The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J. Biol. Chem. 273, 15933–15939 (1998).

  40. 40.

    et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl. Acad. Sci. USA 95, 4152–4157 (1998).

  41. 41.

    et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nat. Genet. 18, 331–337 (1998).

  42. 42.

    et al. Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein. Hum. Mol. Genet. 7, 679–684 (1998).

  43. 43.

    , & Disruption of nodal architecture in skin biopsies of patients with demyelinating neuropathies. J. Peripher. Nerv. Syst. 18, 168–176 (2013).

  44. 44.

    et al. The molecular landscape of ASPM mutations in primary microcephaly. J. Med. Genet. 46, 249–253 (2009).

  45. 45.

    , , , & Predicting the functional effect of amino acid substitutions and indels. PLoS One 7, e46688 (2012).

  46. 46.

    & Accounting for human polymorphisms predicted to affect protein function. Genome Res. 12, 436–446 (2002).

  47. 47.

    , , & MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362 (2014).

  48. 48.

    et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

  49. 49.

    & SNPdryad: predicting deleterious non-synonymous human SNPs using only orthologous protein sequences. Bioinformatics 30, 1112–1119 (2014).

  50. 50.

    , & A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367 (1988).

  51. 51.

    , , , & The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

  52. 52.

    et al. SH3TC2, a protein mutant in Charcot-Marie-Tooth neuropathy, links peripheral nerve myelination to endosomal recycling. Brain 133, 2462–2474 (2010).

  53. 53.

    et al. SH3TC2/KIAA1985 protein is required for proper myelination and the integrity of the node of Ranvier in the peripheral nervous system. Proc. Natl. Acad. Sci. USA 106, 17528–17533 (2009).

  54. 54.

    & Normal Table of Xenopus Embryos (North-Holland, 1967).

  55. 55.

    In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991).

  56. 56.

    , & Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm. Development 132, 2355–2363 (2005).

Download references


The authors are grateful for the participation of the patients and their families in this study. The help of all contributing medical, technical and administrative staff is greatly appreciated. We thank S. Malik for her invaluable work with family A, J.R.P. Madrid and F. Axelrod for advice and discussion and M.F. Passarge for helpful suggestions on the text. D.L.H.B. is a senior Wellcome Clinical Scientist (ref. no. 095698z/11/z). This work was supported by Cambridge NIHR Biomedical Research Centre (Y.-C.C., F.S. and C.G.W.), Austrian Science Fond (P23223-B19 to M.A.-G.), the UK Medical Research Council (M.S.N. and S.S.S.), Association Belge contre les Maladies Neuromusculaires and EU FP7/2007-2013 (grant 2012-305121 (NEUROMICS) to J.B. and P.D.J.), Deutsche Forschungsgemeinschaft (CRC/SFB 1140 to C.B. and KU1587/4-1 to I. Kurth), Gebert-Rüf Stiftung (GRS-046/09 to R.C. and J.S.), and Friedrich-Baur Stiftung (J.S.).

Author information

Author notes

    • Ya-Chun Chen
    •  & Michaela Auer-Grumbach

    These authors contributed equally to this work.


  1. Department of Medical Genetics, University of Cambridge, Cambridge, UK.

    • Ya-Chun Chen
    • , Fay Stafford
    • , Michael S Nahorski
    • , Samiha S Shaikh
    • , Ofélia P Carvalho
    •  & C Geoffrey Woods
  2. Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.

    • Ya-Chun Chen
    • , Fay Stafford
    • , Michael S Nahorski
    • , Samiha S Shaikh
    • , Ofélia P Carvalho
    • , Adeline K Nicholas
    •  & C Geoffrey Woods
  3. Department of Orthopaedics, Medical University Vienna, Vienna, Austria.

    • Michaela Auer-Grumbach
    • , Maria Schabhüttl
    •  & Reinhard Windhager
  4. Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.

    • Shinya Matsukawa
    •  & Tatsuo Michiue
  5. Friedrich-Baur-Institute, Ludwig Maximilians University Munich, Munich, Germany.

    • Manuela Zitzelsberger
    • , Caecilia Weiss
    • , Rolf Stucka
    • , Marina Dusl
    • , Claudia Stendel
    • , Bernd Rautenstrauss
    •  & Jan Senderek
  6. Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

    • Andreas C Themistocleous
    • , Annina B Schmid
    •  & David L H Bennett
  7. Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

    • Andreas C Themistocleous
  8. Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.

    • Tim M Strom
    •  & Thomas Wieland
  9. Institute of Human Genetics, Technische Universität München, Munich, Germany.

    • Tim M Strom
  10. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.

    • Chrysanthi Samara
    •  & Roman Chrast
  11. Disease Mechanism Research Core, RIKEN Brain Science Institute, Saitama, Japan.

    • Adrian W Moore
  12. Neusentis Research Unit, Pfizer, Cambridge, UK.

    • Lily Ting-Yin Cho
    •  & Gareth T Young
  13. School of Health and Rehabilitation Sciences, The University of Queensland, St. Lucia, Australia.

    • Annina B Schmid
  14. Department of Neurology, Istanbul University, Istanbul, Turkey.

    • Yesim Parman
  15. Ambulantes Gesundheitszentrum der Charité Campus Virchow (Humangenetik), Universitätsmedizin Berlin, Berlin, Germany.

    • Luitgard Graul-Neumann
  16. Praxis für Humangenetik Cottbus, Cottbus, Germany.

    • Wolfram Heinritz
  17. Institut für Humangenetik, Universitätsklinikum Leipzig, Leipzig, Germany.

    • Wolfram Heinritz
    •  & Eberhard Passarge
  18. Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany.

    • Eberhard Passarge
  19. Department of Dermatology, Our Lady's Children's Hospital, Dublin, Ireland.

    • Rosemarie M Watson
    • , Maeve A McAleer
    •  & Alan D Irvine
  20. Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.

    • Jens Michael Hertz
  21. Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.

    • Ute Moog
  22. Neuropädiatrische Ambulanz, Krankenhaus der Barmherzigen Schwestern Linz, Linz, Austria.

    • Manuela Baumgartner
  23. Neurogenetics Unit, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.

    • Enza Maria Valente
  24. Departamento de Cirugía Plástica, Hospital Infantil Universitario de San José, Bogotá, Colombia.

    • Diego Pereira
  25. Unidad de Genética, Universidad del Rosario, Bogotá, Colombia.

    • Carlos M Restrepo
  26. Institut für Neuropathologie, Uniklinik RWTH Aachen, Aachen, Germany.

    • Istvan Katona
    •  & Joachim Weis
  27. German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

    • Claudia Stendel
  28. Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK.

    • Frank Reimann
  29. SPZ Neuropädiatrie Charité, Universitätsmedizin Berlin, Berlin, Germany.

    • Katja von Au
  30. CharitéCentrum für Zahn-, Mund- und Kieferheilkunde, Arbeitsbereich Kinderzahnmedizin, Universitätsmedizin Berlin, Berlin, Germany.

    • Christian Finke
  31. GENDIA (GENetic DIAgnostic Network), Antwerp, Belgium.

    • Patrick J Willems
  32. Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK.

    • Gulshan Karbani
  33. Department of Neurology, University of California San Francisco, San Francisco, California, USA.

    • Maria Roberta Cilio
  34. Department of Neuroscience, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.

    • Maria Roberta Cilio
  35. Department of Neurology and Neurophysiology, Our Lady's Children's Hospital, Dublin, Ireland.

    • John C McHugh
  36. Department of Neurology, Adelaide & Meath Hospital, Dublin, Ireland.

    • Sinead M Murphy
  37. Academic Unit of Neurology, Trinity College, Dublin, Ireland.

    • Sinead M Murphy
  38. Clinical Medicine, Trinity College, Dublin, Ireland.

    • Alan D Irvine
  39. Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.

    • Uffe Birk Jensen
  40. Center for Human Genetics, Bioscientia, Ingelheim, Germany.

    • Carsten Bergmann
  41. Department of Medicine, Renal Division, Freiburg University Medical Center, Freiburg, Germany.

    • Carsten Bergmann
  42. Center for Clinical Research, Freiburg University Medical Center, Freiburg, Germany.

    • Carsten Bergmann
  43. Medizinisch Genetisches Zentrum, Munich, Germany.

    • Bernd Rautenstrauss
  44. Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.

    • Jonathan Baets
    •  & Peter De Jonghe
  45. Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.

    • Jonathan Baets
    •  & Peter De Jonghe
  46. Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.

    • Jonathan Baets
    •  & Peter De Jonghe
  47. MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, National Hospital for Neurology, London, UK.

    • Mary M Reilly
  48. Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.

    • Regina Kropatsch
  49. Institute of Human Genetics, Jena University Hospital, Jena, Germany.

    • Ingo Kurth
  50. Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

    • Roman Chrast
  51. Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

    • Roman Chrast


  1. Search for Ya-Chun Chen in:

  2. Search for Michaela Auer-Grumbach in:

  3. Search for Shinya Matsukawa in:

  4. Search for Manuela Zitzelsberger in:

  5. Search for Andreas C Themistocleous in:

  6. Search for Tim M Strom in:

  7. Search for Chrysanthi Samara in:

  8. Search for Adrian W Moore in:

  9. Search for Lily Ting-Yin Cho in:

  10. Search for Gareth T Young in:

  11. Search for Caecilia Weiss in:

  12. Search for Maria Schabhüttl in:

  13. Search for Rolf Stucka in:

  14. Search for Annina B Schmid in:

  15. Search for Yesim Parman in:

  16. Search for Luitgard Graul-Neumann in:

  17. Search for Wolfram Heinritz in:

  18. Search for Eberhard Passarge in:

  19. Search for Rosemarie M Watson in:

  20. Search for Jens Michael Hertz in:

  21. Search for Ute Moog in:

  22. Search for Manuela Baumgartner in:

  23. Search for Enza Maria Valente in:

  24. Search for Diego Pereira in:

  25. Search for Carlos M Restrepo in:

  26. Search for Istvan Katona in:

  27. Search for Marina Dusl in:

  28. Search for Claudia Stendel in:

  29. Search for Thomas Wieland in:

  30. Search for Fay Stafford in:

  31. Search for Frank Reimann in:

  32. Search for Katja von Au in:

  33. Search for Christian Finke in:

  34. Search for Patrick J Willems in:

  35. Search for Michael S Nahorski in:

  36. Search for Samiha S Shaikh in:

  37. Search for Ofélia P Carvalho in:

  38. Search for Adeline K Nicholas in:

  39. Search for Gulshan Karbani in:

  40. Search for Maeve A McAleer in:

  41. Search for Maria Roberta Cilio in:

  42. Search for John C McHugh in:

  43. Search for Sinead M Murphy in:

  44. Search for Alan D Irvine in:

  45. Search for Uffe Birk Jensen in:

  46. Search for Reinhard Windhager in:

  47. Search for Joachim Weis in:

  48. Search for Carsten Bergmann in:

  49. Search for Bernd Rautenstrauss in:

  50. Search for Jonathan Baets in:

  51. Search for Peter De Jonghe in:

  52. Search for Mary M Reilly in:

  53. Search for Regina Kropatsch in:

  54. Search for Ingo Kurth in:

  55. Search for Roman Chrast in:

  56. Search for Tatsuo Michiue in:

  57. Search for David L H Bennett in:

  58. Search for C Geoffrey Woods in:

  59. Search for Jan Senderek in:


M.A.-G., Y.P., L.G.-N., W.H., R.M.W., J.M.H., U.M., M.B., D.P., C.M.R., K.v.A., C.F., G.K., M.A.M., J.C.M., S.M.M., A.D.I., U.B.J. and C.G.W. enrolled patients in the study and provided patient care. Y.P., L.G.-N., E.P., J.M.H., E.M.V., P.J.W., M.R.C., C.B., B.R., J.B., P.D.J., M.M.R., R.K., I. Kurth, C.G.W. and J.S. obtained DNA samples, skin biopsies and nerve biopsy specimens. Y.-C.C., M.A.-G., T.M.S., C.W., M.S., T.W., F.S., M.S.N., S.S.S., O.P.C., A.K.N., C.G.W. and J.S. carried out linkage analysis and PRDM12 mutation screening. Y.-C.C., M.Z., C. Samara, A.W.M., R.S. and R.C. performed expression studies on Prdm12. Y.-C.C., S.M., M.Z., C.W., R.S., M.D., C. Stendel, F.R., T.M. and J.S. assessed functional consequences of mutations in PRDM12. A.C.T., A.B.S., I. Katona, J.W. and D.L.H.B. analyzed skin biopsies from CIP patients. S.M. and T.M. performed experiments in Xenopus embryos. Y.-C.C., L.T.-Y.C. and G.T.Y. were responsible for experiments involving pluripotent stem cells. R.S. and J.S. carried out protein modeling. A.W.M., R.W., J.W., I. Kurth and D.L.H.B. gave critical advice. M.A.-G., C.G.W. and J.S. oversaw the project, participated in data analysis and directed and supervised the research. The manuscript was written by Y.-C.C., M.A.-G., C.G.W. and J.S. with input from other authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to C Geoffrey Woods or Jan Senderek.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–10, Supplementary Tables 1–6 and Supplementary Note.

About this article

Publication history






Further reading