Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep

Abstract

Sleep disorders are common in humans, and sleep loss increases the risk of obesity and diabetes1. Studies in Drosophila2,3 have revealed molecular pathways4,5,6,7 and neural tissues8,9,10 regulating sleep; however, genes that maintain genetic variation for sleep in natural populations are unknown. Here, we characterized sleep in 40 wild-derived Drosophila lines and observed abundant genetic variation in sleep architecture. We associated sleep with genome-wide variation in gene expression11 to identify candidate genes. We independently confirmed that molecular polymorphisms in Catsup (Catecholamines up) are associated with variation in sleep and that P-element mutations in four candidate genes affect sleep and gene expression. Transcripts associated with sleep grouped into biologically plausible genetically correlated transcriptional modules. We confirmed co-regulated gene expression using P-element mutants. Quantitative genetic analysis of natural phenotypic variation is an efficient method for revealing candidate genes and pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation in sleep phenotypes among wild-derived inbred lines.
Figure 2: Association between sleep phenotypes and Catsup polymorphisms.
Figure 3: Validation of sleep candidate genes.
Figure 4: Analyses of candidate genes associated with natural variation in sleep phenotypes.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

NCBI Reference Sequence

References

  1. Knutson, K.L. & Van Cauter, E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. NY Acad. Sci. 1129, 287–304 (2008).

    Article  Google Scholar 

  2. Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  Google Scholar 

  3. Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  Google Scholar 

  4. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).

    Article  CAS  Google Scholar 

  5. Kume, K., Kume, S., Park, S.K., Hirsh, J. & Jackson, F.R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005).

    Article  CAS  Google Scholar 

  6. Williams, J.A., Sathyanarayanan, S., Hendricks, J.C. & Sehgal, A. Interaction between sleep and the immune response in Drosophila: a role for the NFkB Relish. Sleep 30, 389–400 (2007).

    Article  Google Scholar 

  7. Agosto, J. et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat. Neurosci. 11, 354–359 (2008).

    Article  CAS  Google Scholar 

  8. Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757–760 (2006).

    Article  CAS  Google Scholar 

  9. Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756 (2006).

    Article  CAS  Google Scholar 

  10. Foltenyi, K., Greenspan, R.J. & Newport, J.W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160–1167 (2007).

    Article  CAS  Google Scholar 

  11. Ayroles, J.F. et al. Systems genetics of complex traits in Drosophila melanogaster. Nat. Genet. advance online publication, doi:10.1038/ng.332 (22 February 2008).

  12. Nitz, D.A., van Swinderen, B., Tononi, G. & Greenspan, R.J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12, 1934–1940 (2002).

    Article  CAS  Google Scholar 

  13. Tucker, A.M., Dinges, D.F. & Van Dongen, H.P.A. Trait interindividual differences in the sleep physiology of healthy young adults. J. Sleep Res. 16, 170–180 (2007).

    Article  Google Scholar 

  14. Harbison, S.T. & Sehgal, A. Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics 178, 2341–2360 (2008).

    Article  CAS  Google Scholar 

  15. Wu, M.N., Koh, K., Yue, Z., Joiner, W.J. & Sehgal, A. A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep 31, 465–472 (2008).

    Article  Google Scholar 

  16. Passador-Gurgel, G., Hsieh, W.-P., Hunt, P., Deighton, N. & Gibson, G. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nat. Genet. 39, 264–268 (2007).

    Article  CAS  Google Scholar 

  17. Cirelli, C., LaVaute, T.M. & Tononi, G. Sleep and wakefulness modulate gene expression in Drosophila. J. Neurochem. 94, 1411–1419 (2005).

    Article  CAS  Google Scholar 

  18. Stathakis, D.G. et al. The Catecholamines up (Catsup) protein of Drosophila melanogaster functions as a negative regulator of tyrosine hydroxylase activity. Genetics 153, 361–382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol. 15, 1165–1175 (2005).

    Article  CAS  Google Scholar 

  20. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).

    Article  CAS  Google Scholar 

  21. O'Donnell, J.M., Stathakis, D.G., Burton, D.Y. & Chen, Z. Catecholamines-up, a negative regulator of tyrosine hydroxylase and GTP cyclohydrolase I in Drosophila melanogaster. in Chemistry and Biology of Pteridines and Folates (eds. Milstein, G. K. S., Levine, R. & Shane, B.) 211–215 (Kluwer Academic Publishers, Boston, 2002).

    Chapter  Google Scholar 

  22. Bellen, H.J. et al. The BDGP Gene Disruption Project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004).

    Article  CAS  Google Scholar 

  23. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, R60 (2003).

    Article  Google Scholar 

  24. Chintapalli, V.R., Wang, J. & Dow, J.A.T. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39, 715–720 (2007).

    Article  CAS  Google Scholar 

  25. Zhu, W. & Hanes, S.D. Identification of Drosophila Bicoid-interacting proteins using a custom two-hybrid selection. Gene 245, 329–339 (2000).

    Article  CAS  Google Scholar 

  26. Sambandan, D., Yamamoto, A.H., Fanara, J.J., Mackay, T.F.C. & Anholt, R.R.H. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 174, 1349–1363 (2006).

    Article  CAS  Google Scholar 

  27. Zepelin, H. Mammalian sleep. in Principles and Practice of Sleep Medicine (eds. Kryger, M. H., Roth, T. & Dement, W.C.) 69–80 (W.B. Saunders Company, Philadelphia, 1994).

    Google Scholar 

  28. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

  29. Larracuente, A.M. et al. Evolution of protein-coding genes in Drosophila. Trends Genet. 24, 114–123 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01 GM 45146, R01 GM 076083 and R01 AA016560 to T.F.C.M. and the National Sleep Foundation Pickwick Fellowship to S.T.H. We thank D. Reif for assistance with Catsup permutation tests, K. Jordan for assistance with the genetic correlation data and R. Anholt for comments on the manuscript. This is a publication of the W.M. Keck Center for Behavioral Biology.

Author information

Authors and Affiliations

Authors

Contributions

S.T.H. and T.F.C.M. conceived of the experiment. S.T.H measured sleep phenotypes in all lines and measured expression levels in P-element insertions. M.A.C. generated whole-genome expression data and sequenced Catsup. S.T.H, J.F.A. and E.A.S. analyzed the data. R.F.L. generated the 40-line reference panel. S.T.H. and T.F.C.M wrote the paper.

Corresponding author

Correspondence to Trudy F C Mackay.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1,3,4 and 6, Supplementary Figure 1 and Supplementary Methods (PDF 940 kb)

Supplementary Table 2

SFPs and modules of correlated transcripts associated with quantitative sleep traits (XLS 541 kb)

Supplementary Table 5

GO categories (XLS 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harbison, S., Carbone, M., Ayroles, J. et al. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nat Genet 41, 371–375 (2009). https://doi.org/10.1038/ng.330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing