Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-genome fingerprint of the DNA methylome during human B cell differentiation

Subjects

Abstract

We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the DNA methylome of different B cell subpopulations by WGBS and microarray.
Figure 2: Non-CpG methylation detected during B cell differentiation.
Figure 3: Dynamic DNA methylation during B cell differentiation.
Figure 4: Association between DNA methylation and gene expression in different chromatin states.
Figure 5: DNA methylation changes during B cell differentiation in the context of cancer and aging.
Figure 6: DNA methylation changes in various B cell neoplasms in comparison to their normal counterparts.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ziller, M.J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernstein, B.E., Meissner, A. & Lander, E.S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, Z.D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Bergman, Y. & Cedar, H. DNA methylation dynamics in health and disease. Nat. Struct. Mol. Biol. 20, 274–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gifford, C.A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Berman, B.P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains. Nat. Genet. 44, 40–46 (2012).

    Article  CAS  Google Scholar 

  12. Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Hansen, K.D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Y. et al. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 8, e1000533 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Varley, K.E. et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23, 555–567 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, S.T. et al. A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res. 40, 11339–11351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lai, A.Y. et al. DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B cell activation. Genome Res. 23, 2030–2041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaknovich, R. et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 118, 3559–3569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matthias, P. & Rolink, A.G. Transcriptional networks in developing and mature B cells. Nat. Rev. Immunol. 5, 497–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kurosaki, T., Shinohara, H. & Baba, Y. B cell signaling and fate decision. Annu. Rev. Immunol. 28, 21–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Manz, R.A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Slifka, M.K., Antia, R., Whitmire, J.K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Hon, G.C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Ziller, M.J. et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 7, e1002389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arand, J. et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8, e1002750 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tooze, R.M. A replicative self-renewal model for long-lived plasma cells: questioning irreversible cell cycle exit. Front. Immunol. 4, 460 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Viré, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Brinkman, A.B. et al. Sequential ChIP–bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Statham, A.L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martín-Subero, J.I. et al. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood 113, 2488–2497 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. Ohm, J.E. et al. A stem cell–like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39, 232–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Busche, S. et al. Integration of high-resolution methylome and transcriptome analyses to dissect epigenomic changes in childhood acute lymphoblastic leukemia. Cancer Res. 73, 4323–4336 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Agirre, X. et al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell–specific enhancers. Genome Res. 25, 478–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Horvath, S. et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 13, R97 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Heyn, H. et al. Distinct DNA methylomes of newborns and centenarians. Proc. Natl. Acad. Sci. USA 109, 10522–10527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaffe, A.E. & Irizarry, R.A. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15, R31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Deaton, A.M. et al. Cell type–specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 21, 1074–1086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hodges, E. et al. Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol. Cell 44, 17–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeong, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Tsankov, A.M. et al. Transcription factor binding dynamics during human ES cell differentiation. Nature 518, 344–349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Schmidl, C. et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 19, 1165–1174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tagoh, H. et al. Dynamic reorganization of chromatin structure and selective DNA demethylation prior to stable enhancer complex formation during differentiation of primary hematopoietic cells in vitro. Blood 103, 2950–2955 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Wiench, M. et al. DNA methylation status predicts cell type–specific enhancer activity. EMBO J. 30, 3028–3039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taberlay, P.C., Statham, A.L., Kelly, T.K., Clark, S.J. & Jones, P.A. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Res. 24, 1421–1432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schlesinger, F., Smith, A.D., Gingeras, T.R., Hannon, G.J. & Hodges, E. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements. Genome Res. 23, 1601–1614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aran, D., Sabato, S. & Hellman, A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 14, R21 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Aran, D., Toperoff, G., Rosenberg, M. & Hellman, A. Replication timing–related and gene body–specific methylation of active human genes. Hum. Mol. Genet. 20, 670–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Teschendorff, A.E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cruickshanks, H.A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rakyan, V.K. et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20, 434–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marco-Sola, S., Sammeth, M., Guigo, R. & Ribeca, P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat. Methods 9, 1185–1188 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 1, 177–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Aryee, M.J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maksimovic, J., Gordon, L. & Oshlack, A. SWAN: subset-quantile within array normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 13, R44 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bastian, M., Heymann, S. & Jacomy, M. in Proc. 3rd Int. AAAI Conf. Weblogs and Social Media 361–362 (2009).

  67. Blondel, V.D., Guillaume, J.L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008).

    Article  Google Scholar 

  68. Mammana, A., Vingron, M. & Chung, H.R. Inferring nucleosome positions with their histone mark annotation from ChIP data. Bioinformatics 29, 2547–2554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Gautier, L., Cope, L., Bolstad, B.M. & Irizarry, R.A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Fang, J. et al. Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and λ-1 interferon production during viral infection. J. Virol. 86, 1010–1020 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. López-Otín for critical reading of this manuscript, M. Dabad Castellà for his assistance with the WGBS data analysis and M.A. Peinado (Institute of Predictive and Personalized Medicine of Cancer, Barcelona) for providing RNA from HCT116 DKO cells. This work was funded by the European Union's Seventh Framework Programme through the Blueprint Consortium (grant agreement 282510) and the Spanish Ministry of Economy and Competitivity (MINECO; project SAF2009-08663). Methylation microarrays were outsourced to the Spanish Centro Nacional de Genotipado (CEGEN-ISCIII). We are indebted to the Genomics core facility of the Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) for technical help. This work was partially developed at the Centro Esther Koplowitz (CEK; Barcelona, Spain). M.K. is supported by Agéncia de Gestió d'Ajuts Universitaris i de Recerca (AGAUR; Generalitat de Catalunya), E.C. is an Academia Researcher of the Institució Catalana de Recerca i Estudis Avançats and J.I.M.-S. is a Ramón y Cajal researcher of MINECO.

Author information

Authors and Affiliations

Authors

Contributions

M.K., A.C.Q., N.R., M.P., X.A., F.P., D.A., B.P., G. Caron, T.F., M.O.M., M.E.F., S.-T.L. and J.L.W. provided samples from healthy donors and/or purified B cell subpopulations. M.K., A.C.Q., G. Castellano, R.B. and G. Clot analyzed DNA methylation and gene expression arrays. L.A., J.B. and M.G. performed WGBS library preparation and sequencing. A.M., S.H., R.P.S., E.R., A.E. and M.D.-F. processed and analyzed WGBS data. M.K., N.V.-D. and R.V.-B. performed validation experiments. M.K., G. Castellano. S.E., V.P., D. Rico and A.V. functionally characterized dynamically methylated genes. D. Richardson, L.C., A.D. and P.F. were in charge of data management. I.G.G. and H.G.S. coordinated sequencing efforts and performed primary data analysis. H.G.S., R.S., R.K. and E.C. participated in the study design and data interpretation. J.I.M.-S. conceived the study. J.I.M.-S. led the experiments and wrote the manuscript with predominant assistance from M.K. and R.B.

Corresponding author

Correspondence to José I Martín-Subero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–26 and Supplementary Tables 1–3. (PDF 2463 kb)

Supplementary Data Set 1

Annotation of CpGs belonging to each of the methylation modules detected by microarrays. (XLSX 7664 kb)

Supplementary Data Set 2

Enrichment analysis of transcription factor binding sites in the 20 DNA methylation modules. (XLSX 144 kb)

Supplementary Data Set 3

Enrichment analysis of transcription factor binding sites using differentially methylated CpGs identified by WGBS. (XLSX 61 kb)

Supplementary Data Set 4

Gene Ontology analysis of dynamic CpGs belonging to 20 main modules. (XLSX 46 kb)

Supplementary Data Set 5

Differential methylation analysis of B cell neoplasms and their normal cell counterparts. (XLSX 7982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulis, M., Merkel, A., Heath, S. et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47, 746–756 (2015). https://doi.org/10.1038/ng.3291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing