Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intrinsic variability of gene expression encoded in nucleosome positioning sequences

Abstract

Variation in gene expression is an essential material for biological diversity among single cells1,2,3, individuals4,5,6 and populations or species7,8,9. Here we show that expression variability is an intrinsic property that persists at those different levels. Each promoter seems to have a unique capacity to respond to external signals that can be environmental, genetic or even stochastic. Our investigation into nucleosome organization of variably responding promoters revealed a commonly positioned nucleosome at a critical regulatory region where most transcription start sites and TATA elements are located, a deviation from typical nucleosome-free status. The nucleotide sequences in this region of variable promoters showed a high propensity for DNA bending and a periodic distribution of particular dinucleotides, encoding preferences for DNA–nucleosome interaction. Variable expression is likely to occur during removal of this nucleosome for gene activation. This is a unique example of how promoter sequences intrinsically encode regulatory flexibility, which is vital for biological processes such as adaptation, development and evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interconnectedness of expression variability measures and chromatin regulation effect.
Figure 2: Variably expressed genes tend to possess a nucleosome at a specific position.
Figure 3: Positioning of stable nucleosomes in the promoters of variably expressed genes.
Figure 4: Nucleosome positioning of variably expressed genes determined by promoter sequences.

Similar content being viewed by others

References

  1. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  Google Scholar 

  2. Blake, W.J. Kærn, M., Cantor, C.R. & Collins, J.J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  Google Scholar 

  3. Newman, J.R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  Google Scholar 

  4. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  5. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  6. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  Google Scholar 

  7. Tirosh, I., Weinberger, A., Carmi, M. & Barkai, N. A genetic signature of interspecies variations in gene expression. Nat. Genet. 38, 830–834 (2006).

    Article  CAS  Google Scholar 

  8. Townsend, J.P., Cavalieri, D. & Hartl, D.L. Population genetic variation in genome-wide gene expression. Mol. Biol. Evol. 20, 955–963 (2003).

    Article  CAS  Google Scholar 

  9. Spielman, R.S. et al. Common genetic variants account for differences in gene expression among ethnic groups. Nat. Genet. 39, 226–231 (2007).

    Article  CAS  Google Scholar 

  10. Landry, C.R., Lemos, B., Rifkin, S.A., Dickinson, W.J. & Hartl, D.L. Genetic properties influencing the evolvability of gene expression. Science 317, 118–121 (2007).

    Article  CAS  Google Scholar 

  11. Choi, J.K. & Kim, Y.-J. Epigenetic regulation and the variability of gene expression. Nat. Genet. 40, 141–147 (2008).

    Article  CAS  Google Scholar 

  12. Ahmad, K. & Henikoff, S. Epigenetic consequences of nucleosome dynamics. Cell 111, 281–284 (2002).

    Article  CAS  Google Scholar 

  13. Pirrotta, V. & Gross, D.S. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations. Mol. Cell 18, 395–398 (2005).

    Article  CAS  Google Scholar 

  14. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  CAS  Google Scholar 

  15. Lee, S.-I., Pe'er, D., Dudley, A.M., Church, G.M. & Koller, D. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc. Natl. Acad. Sci. USA 103, 14062–14067 (2006).

    Article  CAS  Google Scholar 

  16. Tirosh, I. & Barkai, N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091 (2008).

    Article  CAS  Google Scholar 

  17. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  Google Scholar 

  18. Yuan, G.-C. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  Google Scholar 

  19. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  Google Scholar 

  20. Ozsolak, F., Song, J.S., Liu, X.S. & Fisher, D.E. High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25, 244–248 (2007).

    Article  CAS  Google Scholar 

  21. Moreira, J.M. & Holmberg, S. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J. 17, 6028–6038 (1998).

    Article  CAS  Google Scholar 

  22. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  Google Scholar 

  23. Ioshikhes, I.P., Albert, I., Zanton, S.J. & Pugh, B.F. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38, 1210–1215 (2006).

    Article  CAS  Google Scholar 

  24. Brukner, I., Sanchez, R., Suck, D. & Pongor, S. Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J. 14, 1812–1818 (1995).

    Article  CAS  Google Scholar 

  25. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  26. Basehoar, A.D., Zanton, S.J. & Pugh, B.F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).

    Article  CAS  Google Scholar 

  27. Miura, F. et al. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc. Natl. Acad. Sci. USA 103, 17846–17851 (2006).

    Article  CAS  Google Scholar 

  28. MacIsaac, K.D. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113 (2006).

    Article  Google Scholar 

  29. Fraser, H.B., Hirsh, A.E., Giaever, G., Kumm, J. & Eisen, M.B. Noise mininization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korean Ministry of Science and Technology to Y.-J.K. (Epigenomic Research of Human Disease and Global Research Lab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Joon Kim.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 2–4 (PDF 616 kb)

Supplementary Table 1

Variability measures, cre, and tre for each yeast gene (XLS 1337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Kim, YJ. Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat Genet 41, 498–503 (2009). https://doi.org/10.1038/ng.319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing