Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression

Abstract

To provide a more comprehensive understanding of the genes and evolutionary forces driving colorectal cancer (CRC) progression, we performed Sleeping Beauty (SB) transposon mutagenesis screens in mice carrying sensitizing mutations in genes that act at different stages of tumor progression. This approach allowed us to identify a set of genes that appear to be highly relevant for CRC and to provide a better understanding of the evolutionary forces and systems properties of CRC. We also identified six genes driving malignant tumor progression and a new human CRC tumor-suppressor gene, ZNF292, that might also function in other types of cancer. Our comprehensive CRC data set provides a resource with which to develop new therapies for treating CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumor formation was accelerated and mouse survival times were shortened by SB-mediated mutagenesis.
Figure 2: Cohort and cross-species comparisons.
Figure 3: Apc is the primary gatekeeper mutation in Apcmut:SB, KrasG12D:SB and p53R172H:SB tumors but not in Smad4KO:SB tumors.
Figure 4: Different genes are selectively mutated during gastrointestinal tract tumor formation depending on the nature of the initiating mutation.
Figure 5: Genes involved in malignant gastrointestinal tract tumor progression.

Similar content being viewed by others

References

  1. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Pinto, D. & Clevers, H. Wnt, stem cells and cancer in the intestine. Biol. Cell 97, 185–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  5. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. March, H.N. et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat. Genet. 43, 1202–1209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Starr, T.K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Starr, T.K. et al. A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis. Proc. Natl. Acad. Sci. USA 108, 5765–5770 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Copeland, N.G. & Jenkins, N.A. Harnessing transposons for cancer gene discovery. Nat. Rev. Cancer 10, 696–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Uren, A.G. et al. Large-scale mutagenesis in p19ARF- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tamura, A. et al. Megaintestine in claudin-15–deficient mice. Gastroenterology 134, 523–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Dunlop, M.G. et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat. Genet. 44, 770–776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, X. & Wang, X.F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 19, 71–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, W. et al. DAVID gene ID conversion tool. Bioinformation 2, 428–430 (2008).

    Article  PubMed Central  Google Scholar 

  20. Huart, A.S., MacLaine, N.J., Meek, D.W. & Hupp, T.R. CK1α plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J. Biol. Chem. 284, 32384–32394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meek, D.W. & Cox, M. Induction and activation of the p53 pathway: a role for the protein kinase CK2? Mol. Cell. Biochem. 356, 133–138 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Rotili, D. & Mai, A. Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer 2, 663–679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Pugh, T.J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Zang, Z.J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Guan, B., Wang, T.L. & Shih Ie, M. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 71, 6718–6727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahn, J. et al. Srg3, a mouse homolog of BAF155, is a novel p53 target and acts as a tumor suppressor by modulating p21WAF1/CIP1 expression. Oncogene 30, 445–456 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Gur, G. et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J. 23, 3270–3281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laederich, M.B. et al. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J. Biol. Chem. 279, 47050–47056 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Powell, A.E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Singh, H. et al. Putative RNA-splicing gene LUC7L2 on 7q34 represents a candidate gene in pathogenesis of myeloid malignancies. Blood Cancer J. 3, e117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cowin, P.A. et al. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin. Cancer Res. 72, 4060–4073 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Urick, M.E. et al. PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 71, 4061–4067 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie, Z. et al. Zinc finger protein ZBTB20 is a key repressor of α-fetoprotein gene transcription in liver. Proc. Natl. Acad. Sci. USA 105, 10859–10864 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yuan, J., Luo, K., Zhang, L., Cheville, J.C. & Lou, Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140, 384–396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noll, J.E. et al. Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11. Oncogene 31, 2836–2848 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Li, J. et al. Myocardin-like protein 2 regulates TGFβ signaling in embryonic stem cells and the developing vasculature. Development 139, 3531–3542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Medjkane, S., Perez-Sanchez, C., Gaggioli, C., Sahai, E. & Treisman, R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat. Cell Biol. 11, 257–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muehlich, S. et al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1. Oncogene 31, 3913–3923 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Scharenberg, M.A., Chiquet-Ehrismann, R. & Asparuhova, M.B. Megakaryoblastic leukemia protein-1 (MKL1): increasing evidence for an involvement in cancer progression and metastasis. Int. J. Biochem. Cell Biol. 42, 1911–1914 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Yoshio, T., Morita, T., Tsujii, M., Hayashi, N. & Sobue, K. MRTF-A/B suppress the oncogenic properties of v-ras– and v-src–mediated transformants. Carcinogenesis 31, 1185–1193 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Koo, B.K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Giannakis, M. et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murphy, M. et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Das, T.K., Sangodkar, J., Negre, N., Narla, G. & Cagan, R.L. Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 32, 3184–3197 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bard-Chapeau, E.A. et al. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat. Genet. 46, 24–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Lawrence, M.S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pérez-Mancera, P.A. et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486, 266–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mann, K.M. et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. USA 109, 5934–5941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lipkin, S.M., Naar, A.M., Kalla, K.A., Sack, R.A. & Rosenfeld, M.G. Identification of a novel zinc finger protein binding a conserved element critical for Pit-1–dependent growth hormone gene expression. Genes Dev. 7, 1674–1687 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Fearon, E.R & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Jackson, E.L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olive, K.P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59, 6113–6117 (1999).

    CAS  PubMed  Google Scholar 

  60. el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Quinlan, A.R. et al. Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res. 20, 623–635 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brett, B.T. et al. Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty–induced tumors. PLoS ONE 6, e24668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Rogers, S. Rogers and the Institute of Molecular and Cell Biology histopathology core for performing the histopathological analysis; M.M. Taketo (Kyoto University) for supplying Smad4KO mice and S. Robin (Institute Curie) for supplying Vil1-creERT2 mice; Y. Ito for helpful discussions and encouragement; and P. Goh, P. Cheok, N. Lim, D. Chen and C. Wee for monitoring mice and animal technical assistance. The Biomedical Research Council, Agency for Science, Technology and Research (A-STAR), Singapore, and the Cancer Prevention Research Institute of Texas (CPRIT) supported this research. N.G.C. and N.A.J. are both CPRIT Scholars in Cancer Research. D.J.A. and A.G.R. are supported by Cancer Research UK and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

H.T., N.G.C. and N.A.J. designed the research. H.T., N.G.C. and N.A.J. wrote the manuscript. H.T., Z.W. and H.K. performed the experiments. H.T., H.K., M.B.M., C.C.K.Y., D.J.A. and A.G.R. performed the statistical analysis. D.J.A. and A.G.R. performed the sequencing. J.M.W. diagnosed tumor grade.

Corresponding author

Correspondence to Nancy A Jenkins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Lineage tracing using the R26R3 LacZ reporter line and Villin-CreERT2 mice showed that Villin-CreERT2 marks intestinal stem cells.

(a) Villin-CreERT2:R26R double–compound mutant mice were administrated 2 mg of tamoxifen by intraperitoneal injection for 3 d each beginning at 4 weeks of age. On day 60 after tamoxifen injection, X-Gal staining was performed using whole-mount intestinal tissue. (b) More than 95% of the villi in the duodenum, (c) ~90% in the jejunum, (d) ~60% in the ileum and (e) 20–30% in the colon showed LacZ staining. Scale bars, 50 μm. The presence of blue-stained cells 60 d after Cre induction shows that Villin-CreERT2 is expressed in intestinal stem cells.

Supplementary Figure 2 Comparison of survival curves and the location of tumors.

SB mutagenesis shortened the lifespan of (a) ApcMin, (b) KrasG12D, (c) Smad4KO and (d) wt mice but not p53R172H mice (e). Polyps developed mainly in the duodenum and jejunum. (f) The polyp number in the colon was significantly higher in the KrasG12D cohort compared to the Smad4KO and p53R172H cohorts (t test, P < 0.05). Duo, duodenum; Jej, jejunum; Ile, ileum; Col, colon.

Supplementary Figure 3 Histopathology of intestinal tumors in KrasG12D:SB, Smad4KO:SB, p53R172H:SB and ApcMin:SB mice.

(a) A polypoid KrasG12D:SB adenoma and (b,c) two invasive KrasG12D:SB adenocarcinomas. (d) A low-magnification image of a Smad4KO:SB sessile adenoma and (e) an invasive Smad4KO:SB mucinous adenocarcinoma. (f) High-power magnification of e shows that tumor cells have invaded the tunica muscularis. (g) Invasive Smad4KO:SB mucinous tumor cells reaching the serosa. (h) An invasive Smad4KO:SB adenocarcinoma containing signet ring cells. (i) Smad4KO:SB tumor cells along with Paneth cells can be seen invading the tunica muscularis. (j) A p53R172H:SB sessile adenoma and (k,l) two invasive p53R172H:SB adenocarcinomas. (m) A primary intestinal adenocarcinoma that (n) metastasized to the lymph node. (o) A second case of lymph node metastasis. (p,q) Two ApcMin:SB adenomas. Scale bars, (a,k) 0.5 mm, (d,e j p,q) 200 μm, (b,c,f,g,ln) 100 μm, (h,i,o) 50 μm.

Supplementary Figure 4 Trunk driver analysis shows CIS genes with high read counts.

(a) ApcMin:SB, (b) KrasG12D:SB, (c) Smad4KO:SB and (d) p53R172H:SB.

Supplementary Figure 5 Characterization of SB-Smad4 and SB-Rspo2 fusion transcripts.

(a) A chromatogram showing the partial sequence of an SB-Smad4 fusion tumor transcript. The transcript contains Smad4 exon2, which was replaced with the PGK-neo expression cassette in the knockout allele. This shows that the transposon is inserted in the wild-type Smad4 allele. (b) Primer design used to amplify by RT-PCR SB-Rspo2 fusion tumor transcripts. Black arrows denote primers. (c) A chromatogram showing a partial sequence of the SB-Rspo2 fusion transcript. Note that the transposon splice donor (SD) site is spliced to Rspo2 exon 2, which contains the ATG initiation codon. Full-length Rspo2 protein is thus overexpressed following SB insertion upstream of Rspo2. ex, exon.

Supplementary Figure 6 CRCs that overexpress RSPO1, RSPO2 or RSPO3 and lack APC mutations have decreased expression or an increased number of mutations in SMAD4.

(a) Five CRC cases (highlighted by asterisks) out of seven CRC cases, which showed RSPO1 or RSPO2 overexpression but carried no mutations in APC, had decreased SMAD4 expression and/or mutations in SMAD4 (ref. 4). (b) Six of seven CRC cases, which showed RSPO2 or RSPO3 overexpression but carried no APC mutations, showed deregulation of SMAD4 (modified from Supplementary Figure 21 in ref. 5).

Supplementary Figure 7 Hamming dendrogram shows biological independence of transposon insertions in KrasG12D:SB tumors.

Supplementary Figure 8 Hamming dendrogram shows biological independence of transposon insertions in Smad4KO:SB tumors.

Supplementary Figure 9 Hamming dendrogram shows biological independence of transposon insertions in p53R172H:SB tumors.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Note. (PDF 10489 kb)

Supplementary Tables 1–23

Supplementary Tables 1–23. (XLSX 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, H., Wei, Z., Koso, H. et al. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nat Genet 47, 142–150 (2015). https://doi.org/10.1038/ng.3175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3175

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research