Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer

Abstract

Here we describe a conditional piggyBac transposition system in mice and report the discovery of large sets of new cancer genes through a pancreatic insertional mutagenesis screen. We identify Foxp1 as an oncogenic transcription factor that drives pancreatic cancer invasion and spread in a mouse model and correlates with lymph node metastasis in human patients with pancreatic cancer. The propensity of piggyBac for open chromatin also enabled genome-wide screening for cancer-relevant noncoding DNA, which pinpointed a Cdkn2a cis-regulatory region. Histologically, we observed different tumor subentities and discovered associated genetic events, including Fign insertions in hepatoid pancreatic cancer. Our studies demonstrate the power of genetic screening to discover cancer drivers that are difficult to identify by other approaches to cancer genome analysis, such as downstream targets of commonly mutated human cancer genes. These piggyBac resources are universally applicable in any tissue context and provide unique experimental access to the genetic complexity of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A conditional piggyBac transposition system for tissue-specific mutagenesis in mice.
Figure 2: A pancreatic piggyBac cancer gene discovery screen identifies large sets of common insertion sites.
Figure 3: Exploiting QISeq data to identify patterns of mutually exclusive cancer gene insertions.
Figure 4: piggyBac insertion patterns in the transcription factor genes Foxp1, Foxp2 and Bcl6.
Figure 5: Functional validation of Foxp1.
Figure 6: Deploying piggyBac to identify cancer-relevant noncoding areas with distant cis regulatory function.
Figure 7: Deploying piggyBac to study the genetic basis of different histologic subtypes of pancreatic cancer.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  2. St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bessereau, J.L. Transposons in C. elegans. WormBook doi/10.1895/wormbook.1.70.1 (18 January 2006).

  4. Thibault, S.T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Ivics, Z. et al. Transposon-mediated genome manipulation in vertebrates. Nat. Methods 6, 415–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Horie, K. et al. Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc. Natl. Acad. Sci. USA 98, 9191–9196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fischer, S.E., Wienholds, E. & Plasterk, R.H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. USA 98, 6759–6764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dupuy, A.J., Fritz, S. & Largaespada, D.A. Transposition and gene disruption in the male germline of the mouse. Genesis 30, 82–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Keng, V.W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat. Biotechnol. 27, 264–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Starr, T.K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dupuy, A.J. et al. A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res. 69, 8150–8156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Copeland, N.G. & Jenkins, N.A. Harnessing transposons for cancer gene discovery. Nat. Rev. Cancer 10, 696–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Liang, Q., Kong, J., Stalker, J. & Bradley, A. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. Genesis 47, 404–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, W. et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 9290–9295 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rad, R. et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330, 1104–1107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  22. Madison, B.B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Mann, K.M. et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. USA 109, 5934–5941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pérez-Mancera, P.A. et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486, 266–270 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hingorani, S.R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sarver, A.L., Erdman, J., Starr, T., Largaespada, D.A. & Silverstein, K.A. TAPDANCE: An automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data. BMC Bioinformatics 13, 154 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Ridder, J., Uren, A., Kool, J., Reinders, M. & Wessels, L. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput. Biol. 2, e166 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Koon, H.B., Ippolito, G.C., Banham, A.H. & Tucker, P.W. FOXP1: a potential therapeutic target in cancer. Expert Opin. Ther. Targets 11, 955–965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biankin, A.V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roberts, R. Genetics of coronary artery disease. Circ. Res. 114, 1890–1903 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Visel, A. et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shvarts, A. et al. A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF-p53 signaling. Genes Dev. 16, 681–686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basso, K. & Dalla-Favera, R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 247, 172–183 (2012).

    Article  PubMed  CAS  Google Scholar 

  39. Holzmann, K. et al. Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res. 64, 4428–4433 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Klimstra, D.S., Pitman, M.B. & Hruban, R.H. An algorithmic approach to the diagnosis of pancreatic neoplasms. Arch. Pathol. Lab. Med. 133, 454–464 (2009).

    PubMed  Google Scholar 

  41. Metzgeroth, G., Strobel, P., Baumbusch, T., Reiter, A. & Hastka, J. Hepatoid adenocarcinoma—review of the literature illustrated by a rare case originating in the peritoneal cavity. Onkologie 33, 263–269 (2010).

    Article  PubMed  Google Scholar 

  42. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Cox, G.A., Mahaffey, C.L., Nystuen, A., Letts, V.A. & Frankel, W.N. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development. Nat. Genet. 26, 198–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Mukherjee, S. et al. Human fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. Cell Cycle 11, 2359–2366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maston, G.A., Landt, S.G., Snyder, M. & Green, M.R. Characterization of enhancer function from genome-wide analyses. Annu. Rev. Genomics Hum. Genet. 13, 29–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, X. et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol. Ther. 18, 1803–1813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bender, A.M. et al. Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res. 70, 3557–3565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vassiliou, G.S. et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat. Genet. 43, 470–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eser, S. et al. Selective requirement of PI3K/PDK1 signalling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Quail, M.A., Swerdlow, H. & Turner, D.J. Improved protocols for the illumina genome analyzer sequencing system. Curr. Protoc. Hum. Genet. 62, 18.2 (2009).

    Google Scholar 

  51. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  52. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. von Burstin, J. et al. Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. Int. J. Cancer 123, 2138–2147 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Saur, D. et al. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 129, 1237–1250 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Rad, R. et al. CD25+/Foxp3+ T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo. Gastroenterology 131, 525–537 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust Sanger Institute Research Support Facility for excellent technical assistance as well as K. Yusa and B. Göttgens for discussions and advice. The work was supported by the Wellcome Trust (to A.B.), the German Cancer Consortium (to R.R.) and the Helmholtz Gemeinschaft (PCCC Consortium; to R.R. and D.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.R. and A.B. designed the study. R.R. wrote the paper. R.R., L.R., W.W., A. Strong, H. Ponstingl, I.F.B., M.M., K.S., J.W., M. Hieber, C.V., S.E., U.G., R.Ö., M.Z., M.B., R.M., J.C., M.F., I.V., F.C.-C., A. Sarver, B.S., J.B., E.M., A.K., U.E., M.A.Q., G.V., I.E. and D.S. performed experiments or bioinformatics or histological analyses. J.t.H., H. Prosser, M. Heikenwälder, G.S., T.K., P.R., D.A., R.G., C.P., Z.N., L.W., R.M.S., M.A.Q., P.L. and D.S. contributed biological or analytical tools.

Corresponding author

Correspondence to Roland Rad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22 and Supplementary Table 3 (PDF 12142 kb)

Supplementary Table 1

Tapdance analysis to identify common insertion sites in 49 pancreatic cancers. (XLS 105 kb)

Supplementary Table 2

GCK (Gaussian Kernel Convolution) analysis to identify common insertion sites in 49 pancreatic cancers. (XLSX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, R., Rad, L., Wang, W. et al. A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat Genet 47, 47–56 (2015). https://doi.org/10.1038/ng.3164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3164

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research