Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes

Abstract

To further understand the molecular distinctions between kidney cancer subtypes, we analyzed exome, transcriptome and copy number alteration data from 167 primary human tumors that included renal oncocytomas and non–clear cell renal cell carcinomas (nccRCCs), consisting of papillary (pRCC), chromophobe (chRCC) and translocation (tRCC) subtypes. We identified ten significantly mutated genes in pRCC, including MET, NF2, SLC5A3, PNKD and CPQ. MET mutations occurred in 15% (10/65) of pRCC samples and included previously unreported recurrent activating mutations. In chRCC, we found TP53, PTEN, FAAH2, PDHB, PDXDC1 and ZNF765 to be significantly mutated. Gene expression analysis identified a five-gene set that enabled the molecular classification of chRCC, renal oncocytoma and pRCC. Using RNA sequencing, we identified previously unreported gene fusions, including ACTG1-MITF fusion. Ectopic expression of the ACTG1-MITF fusion led to cellular transformation and induced the expression of downstream target genes. Finally, we observed upregulation of the anti-apoptotic factor BIRC7 in MiTF-high RCC tumors, suggesting a potential therapeutic role for BIRC7 inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic mutations in nccRCC.
Figure 2: Significantly mutated genes in nccRCC.
Figure 3: RNA-seq–based classification of nccRCCs.
Figure 4: Proteins encoded by the CLTC-TFEB and MITF gene fusions.
Figure 5: ACTG1-MITF gene fusion promotes anchorage-independent growth.
Figure 6: Integrated analysis of alterations in key pathways in nccRCC subtypes.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Protein Data Bank

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  2. Peña-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  5. Srigley, J.R. et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am. J. Surg. Pathol. 37, 1469–1489 (2013).

    Article  PubMed  Google Scholar 

  6. Yusenko, M.V. Molecular pathology of renal oncocytoma: a review. Int. J. Urol. 17, 602–612 (2010).

    Article  PubMed  Google Scholar 

  7. Amin, M.B. et al. Chromophobe renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 145 cases. Am. J. Surg. Pathol. 32, 1822–1834 (2008).

    Article  PubMed  Google Scholar 

  8. Eble, J.N., Sauter, G., Epstein, J.I. & Sesterhenn, I.A. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs (IARCPress, Lyon, France, 2004).

  9. Schieda, N., Al-Subhi, M., Flood, T.A., El-Khodary, M. & McInnes, M.D. Diagnostic accuracy of segmental enhancement inversion for the diagnosis of renal oncocytoma using biphasic computed tomography (CT) and multiphase contrast-enhanced magnetic resonance imaging (MRI). Eur. Radiol. 24, 2787–2794 (2014).

    Article  PubMed  Google Scholar 

  10. Vargas, H.A. et al. Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 264, 779–788 (2012).

    Article  PubMed  Google Scholar 

  11. Rosenkrantz, A.B. et al. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR Am. J. Roentgenol. 195, W421–W427 (2010).

    Article  PubMed  Google Scholar 

  12. Young, A.N. Editorial comment from Dr Young to Molecular pathology of renal oncocytoma: a review. Int. J. Urol. 17, 612–613 (2010).

    Article  PubMed  Google Scholar 

  13. Picken, M.M. Editorial comment from Dr Picken to Molecular pathology of renal oncocytoma: a review. Int. J. Urol. 17, 613–614 (2010).

    Article  PubMed  Google Scholar 

  14. Yusenko, M.V. Molecular pathology of chromophobe renal cell carcinoma: a review. Int. J. Urol. 17, 592–600 (2010).

    Article  PubMed  Google Scholar 

  15. Osunkoya, A.O. Editorial comment to Molecular pathology of chromophobe renal cell carcinoma: a review. Int. J. Urol. 17, 600–601 (2010).

    Article  PubMed  Google Scholar 

  16. Macher-Goeppinger, S. et al. Molecular heterogeneity of TFE3 activation in renal cell carcinomas. Mod. Pathol. 25, 308–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Bellmunt, J. & Dutcher, J. Targeted therapies and the treatment of non–clear cell renal cell carcinoma. Ann. Oncol. 24, 1730–1740 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hagenkord, J.M., Gatalica, Z., Jonasch, E. & Monzon, F.A. Clinical genomics of renal epithelial tumors. Cancer Genet. 204, 285–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Linehan, W.M. & Ricketts, C.J. The metabolic basis of kidney cancer. Semin. Cancer Biol. 23, 46–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Popova, T. et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am. J. Hum. Genet. 92, 974–980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farley, M.N. et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol. Cancer Res. 11, 1061–1071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ricketts, C.J. et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J. Urol. 188, 2063–2071 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt, L. et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18, 2343–2350 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Argani, P. et al. Xp11 translocation renal cell carcinoma in adults: expanded clinical, pathologic, and genetic spectrum. Am. J. Surg. Pathol. 31, 1149–1160 (2007).

    Article  PubMed  Google Scholar 

  26. Peña-Llopis, S. & Brugarolas, J. Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications. Nat. Protoc. 8, 2240–2255 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Forbes, S.A. et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 38, D652–D657 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pfeifer, G.P. Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301, 259–281 (2006).

    CAS  PubMed  Google Scholar 

  30. Ng, P.C. & Henikoff, S. Accounting for human polymorphisms predicted to affect protein function. Genome Res. 12, 436–446 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894–3900 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. González-Pérez, A. & López-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, W. et al. Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase. Proc. Natl. Acad. Sci. USA 103, 3563–3568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, M. et al. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Proteins 44, 32–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Gandino, L., Longati, P., Medico, E., Prat, M. & Comoglio, P.M. Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J. Biol. Chem. 269, 1815–1820 (1994).

    CAS  PubMed  Google Scholar 

  37. Toker, L. et al. Inositol-related gene knockouts mimic lithium's effect on mitochondrial function. Neuropsychopharmacology 39, 319–328 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Patel, M.S., Nemeria, N.S., Furey, W. & Jordan, F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J. Biol. Chem. 289, 16615–16623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Imbard, A. et al. Molecular characterization of 82 patients with pyruvate dehydrogenase complex deficiency. Structural implications of novel amino acid substitutions in E1 protein. Mol. Genet. Metab. 104, 507–516 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Quintana, E. et al. PDH E1β deficiency with novel mutations in two patients with Leigh syndrome. J. Inherit. Metab. Dis. 32, 339–343 (2009).

    Article  Google Scholar 

  41. Linehan, W.M., Srinivasan, R. & Schmidt, L.S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    CAS  Google Scholar 

  42. Steinberg, G.R. & Kemp, B.E. AMPK in health and disease. Physiol. Rev. 89, 1025–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Scott, J.W., Ross, F.A., Liu, J.K. & Hardie, D.G. Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the γ subunit. EMBO J. 26, 806–815 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davis, C.F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burwinkel, B. et al. Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the γ2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am. J. Hum. Genet. 76, 1034–1049 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carling, D., Mayer, F.V., Sanders, M.J. & Gamblin, S.J. AMP-activated protein kinase: nature's energy sensor. Nat. Chem. Biol. 7, 512–518 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Davies, J.K. et al. Characterization of the role of γ2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson-White syndrome. Am. J. Physiol. Heart Circ. Physiol. 290, H1942–H1951 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. de Moor, R.A. et al. Hepatocellular carcinoma in glycogen storage disease type IV. Arch. Dis. Child. 82, 479–480 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Manzia, T.M. et al. Glycogen storage disease type Ia and VI associated with hepatocellular carcinoma: two case reports. Transplant. Proc. 43, 1181–1183 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Calderaro, J. et al. Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. J. Hepatol. 58, 350–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Fu, L., Wang, G., Shevchuk, M.M., Nanus, D.M. & Gudas, L.J. Generation of a mouse model of von Hippel–Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1. Cancer Res. 71, 6848–6856 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeon, S.M., Chandel, N.S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Milacic, M. et al. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel) 4, 1180–1211 (2012).

    Article  CAS  Google Scholar 

  54. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Nagashima, Y., Kuroda, N. & Yao, M. Transition of organizational category on renal cancer. Jpn. J. Clin. Oncol. 43, 233–242 (2013).

    Article  PubMed  Google Scholar 

  56. Beleut, M. et al. Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome. BMC Cancer 12, 310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rohan, S. et al. Gene expression profiling separates chromophobe renal cell carcinoma from oncocytoma and identifies vesicular transport and cell junction proteins as differentially expressed genes. Clin. Cancer Res. 12, 6937–6945 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Venkateswarlu, K. & Cullen, P.J. Molecular cloning and functional characterization of a human homologue of centaurin-α. Biochem. Biophys. Res. Commun. 262, 237–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Zimmermann, P. The prevalence and significance of PDZ domain–phosphoinositide interactions. Biochim. Biophys. Acta 1761, 947–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Weimer, J.M., Chattopadhyay, S., Custer, A.W. & Pearce, D.A. Elevation of Hook1 in a disease model of Batten disease does not affect a novel interaction between ankyrin G and Hook1. Biochem. Biophys. Res. Commun. 330, 1176–1181 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Palmer, R.E. et al. Induction of BAIAP3 by the EWS-WT1 chimeric fusion implicates regulated exocytosis in tumorigenesis. Cancer Cell 2, 497–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Cheng, H., Fukushima, T., Takahashi, N., Tanaka, H. & Kataoka, H. Hepatocyte growth factor activator inhibitor type 1 regulates epithelial to mesenchymal transition through membrane-bound serine proteinases. Cancer Res. 69, 1828–1835 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Yusenko, M.V. et al. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer 9, 152 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Righi, L., Rapa, I., Votta, A., Papotti, M. & Sapino, A. Human achaete-scute homolog-1 expression in neuroendocrine breast carcinoma. Virchows Arch. 460, 415–421 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Palmieri, F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 34, 465–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Monzon, F.A. et al. Whole genome SNP arrays as a potential diagnostic tool for the detection of characteristic chromosomal aberrations in renal epithelial tumors. Mod. Pathol. 21, 599–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Choueiri, T.K. et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J. Clin. Oncol. 31, 181–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Lager, D.J., Huston, B.J., Timmerman, T.G. & Bonsib, S.M. Papillary renal tumors. Morphologic, cytochemical, and genotypic features. Cancer 76, 669–673 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Steingrímsson, E., Copeland, N.G. & Jenkins, N.A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365–411 (2004).

    Article  PubMed  CAS  Google Scholar 

  70. Haq, R. & Fisher, D.E. Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J. Clin. Oncol. 29, 3474–3482 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Malouf, G.G. et al. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. Clin. Cancer Res. 20, 4129–4140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maruyama, K. et al. Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J. Exp. Med. 210, 1947–1960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dynek, J.N. et al. Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res. 68, 3124–3132 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Hoek, K.S. et al. Novel MITF targets identified using a two-step DNA microarray strategy. Pigment Cell Melanoma Res. 21, 665–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Yokoyama, S. et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480, 99–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hemesath, T.J. et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8, 2770–2780 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Hakimi, A.A., Pham, C.G. & Hsieh, J.J. A clear picture of renal cell carcinoma. Nat. Genet. 45, 849–850 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Gad, S. et al. Mutations in BHD and TP53 genes, but not in HNF1β gene, in a large series of sporadic chromophobe renal cell carcinoma. Br. J. Cancer 96, 336–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Contractor, H., Zariwala, M., Bugert, P., Zeisler, J. & Kovacs, G. Mutation of the p53 tumour suppressor gene occurs preferentially in the chromophobe type of renal cell tumour. J. Pathol. 181, 136–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Morgan, M. et al. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Saunders, C.T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brunet, J.P., Tamayo, P., Golub, T.R. & Mesirov, J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 101, 4164–4169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dees, N.D. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22, 1589–1598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rudin, C.M. et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 44, 1111–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, T.D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Greenman, C.D. et al. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics 11, 164–175 (2010).

    Article  PubMed  Google Scholar 

  96. Tibshirani, R. & Wang, P. Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics 9, 18–29 (2008).

    Article  PubMed  Google Scholar 

  97. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jaiswal, B.S. et al. Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell 16, 463–474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Genentech DNA Sequencing, Oligo and Bioinformatics groups for their help with the project. We thank D. Bhatt, R. Bourgon, Z. Zhang, C. Klijn, M. Brauer and L. Johnson for their support during the course of this project. We would like to acknowledge K. Mukhyala for assistance in gene annotation. This work was supported in part by grants 1R01CA175754 (US National Institutes of Health (NIH)) and RP130603 (CPRIT; Texas, USA) to J.B. and grant 5R01CA154475-04 (US NIH) to I.P. Sample collection was supported in part by grant 5P30CA142543 (US NIH). J.B. is a Virginia Murchison Linthicum Endowed Scholar in medical research.

Author information

Authors and Affiliations

Authors

Contributions

S.D. and E.W.S. performed the exome and RNA-seq analyses. T.T.N. performed the simulation analysis. E.W.S. and J.S.G. conducted the mutational signature studies. S.D. and P.M.H. performed copy number analysis. A.P.-J., V.T.-T., E.H., Z.M., H.M.H. and S.P.-L. were responsible for sample collection, annotation, processing, and DNA and RNA extraction. Z.M. oversaw the collection of the various data types. Z.M. and Y.-J.C. performed validation of the fusions. P.K. facilitated sample procurement, selected samples for DNA and RNA extraction, oversaw FISH analyses and served as the pathologist for the study. J.R. and G.P. processed the RNA-seq reads. T.D.W. provided support for gene fusion prediction. K.T., C.H., C.J.H. and C.S.R. prepared the sequencing libraries. N.Z., K.B.P., S.C. and B.S.J. performed biological validation studies. S. Saleem collected information about the cases. V.M., Y.L., A.S. and I.P. facilitated sample procurement. L.N.K. and N.V.G. performed in silico analyses. J.G., V.J. and J.S. collected sequencing data. J.G. performed mutation validation. B.C. analyzed targeted capture data. S.H. and M.J. performed Sanger sequencing to validate indels. W.W. predicted the structural consequences of MET mutations. F.J.d.S. provided organizational support. J.B. and S. Seshagiri conceived the study and designed the experiments. E.W.S., S.D., Z.M., P.K., J.B. and S. Seshagiri wrote the manuscript, which was reviewed and edited by the other coauthors.

Corresponding authors

Correspondence to James Brugarolas or Somasekar Seshagiri.

Ethics declarations

Competing interests

All Genentech-affiliated authors (S.D., E.W.S., Z.M., B.S.J., N.Z., T.T.N., K.B.P., Y.-J.C., S.C., S.H., M.J., J.G., K.T., C.H., C.J.H., J.S., C.S.R., V.J., W.W., P.M.H., B.C., J.S.G., J.R., G.P., T.D.W., F.J.d.S. and S. Seshagiri) hold Roche shares.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–29. (PDF 12430 kb)

Supplementary Tables 1–13

Supplementary Tables 1–13. (XLSX 1495 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durinck, S., Stawiski, E., Pavía-Jiménez, A. et al. Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes. Nat Genet 47, 13–21 (2015). https://doi.org/10.1038/ng.3146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3146

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer