Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tiny RNAs associated with transcription start sites in animals

A Corrigendum to this article was published on 01 July 2009

This article has been updated

Abstract

It has been reported that relatively short RNAs of heterogeneous sizes are derived from sequences near the promoters of eukaryotic genes. As part of the FANTOM4 project, we have identified tiny RNAs with a modal length of 18 nt that map within −60 to +120 nt of transcription start sites (TSSs) in human, chicken and Drosophila. These transcription initiation RNAs (tiRNAs) are derived from sequences on the same strand as the TSS and are preferentially associated with G+C-rich promoters. The 5′ ends of tiRNAs show peak density 10–30 nt downstream of TSSs, indicating that they are processed. tiRNAs are generally, although not exclusively, associated with highly expressed transcripts and sites of RNA polymerase II binding. We suggest that tiRNAs may be a general feature of transcription in metazoa and possibly all eukaryotes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Example tiRNA loci.
Figure 2: Distribution and size characteristics of tiRNAs.
Figure 3: Expression of genes with and without tiRNAs.
Figure 4: ChIP-chip enrichment of promoters with tiRNAs.

Accession codes

Accessions

ArrayExpress

Gene Expression Omnibus

Change history

  • 26 June 2009

    NOTE: In the version of this article initially published, some author affiliations were incorrectly stated. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Chu, C.Y. & Rana, T.M. Small RNAs: regulators and guardians of the genome. J. Cell. Physiol. 213, 412–419 (2007).

    CAS  Article  Google Scholar 

  2. Mattick, J.S. & Makunin, I.V. Small regulatory RNAs in mammals. Hum. Mol. Genet. 14, R121–R132 (2005).

    CAS  Article  Google Scholar 

  3. Davis, C.A. & Ares, M. Jr. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103, 3262–3267 (2006).

    CAS  Article  Google Scholar 

  4. Chekanova, J.A. et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131, 1340–1353 (2007).

    CAS  Article  Google Scholar 

  5. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    CAS  Article  Google Scholar 

  6. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    CAS  Article  Google Scholar 

  7. Tsuchiya, S. et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 42, 1530–1536 (1982).

    CAS  Google Scholar 

  8. Glazov, E.A. et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18, 957–964 (2008).

    CAS  Article  Google Scholar 

  9. Ruby, J.G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17, 1850–1864 (2007).

    CAS  Article  Google Scholar 

  10. Chung, W.J., Okamura, K., Martin, R. & Lai, E.C. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr. Biol. 18, 795–802 (2008).

    CAS  Article  Google Scholar 

  11. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798–802 (2008).

    CAS  Article  Google Scholar 

  12. Carninci, P. et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37, 327–336 (1996).

    CAS  Article  Google Scholar 

  13. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. USA 100, 15776–15781 (2003).

    CAS  Article  Google Scholar 

  14. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    CAS  Article  Google Scholar 

  15. de Hoon, M. & Hayashizaki, Y. Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 44 (Suppl.), 627–632 (2008).

    CAS  Article  Google Scholar 

  16. Eis, P.S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627–3632 (2005).

    CAS  Article  Google Scholar 

  17. Pedersen, J.S. et al. Identification and classification of conserved RNA secondary structures in the human genome. PLOS Comput. Biol. 2, e33 (2006).

    CAS  Article  Google Scholar 

  18. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    CAS  Article  Google Scholar 

  19. Griffiths-Jones, S., Saini, H.K., van Dongen, S. & Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    CAS  Article  Google Scholar 

  20. Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, D773–D779 (2008).

    CAS  Article  Google Scholar 

  21. Kaczynski, J., Cook, T. & Urrutia, R. Sp1- and Kruppel-like transcription factors. Genome Biol. 4, 206 (2003).

    Article  Google Scholar 

  22. Kadonaga, J.T. The DPE, a core promoter element for transcription by RNA polymerase II. Exp. Mol. Med. 34, 259–264 (2002).

    CAS  Article  Google Scholar 

  23. Frith, M.C. et al. A code for transcription initiation in mammalian genomes. Genome Res. 18, 1–12 (2008).

    CAS  Article  Google Scholar 

  24. Pall, G.S., Codony-Servat, C., Byrne, J., Ritchie, L. & Hamilton, A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 35, e60 (2007).

    Article  Google Scholar 

  25. Mellor, J., Dudek, P. & Clynes, D. A glimpse into the epigenetic landscape of gene regulation. Curr. Opin. Genet. Dev. 18, 116–122 (2008).

    CAS  Article  Google Scholar 

  26. Margaritis, T. & Holstege, F.C. Poised RNA polymerase II gives pause for thought. Cell 133, 581–584 (2008).

    CAS  Article  Google Scholar 

  27. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    CAS  Article  Google Scholar 

  28. Pal, M., McKean, D. & Luse, D.S. Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence. Mol. Cell. Biol. 21, 5815–5825 (2001).

    CAS  Article  Google Scholar 

  29. Wind, M. & Reines, D. Transcription elongation factor SII. Bioessays 22, 327–336 (2000).

    CAS  Article  Google Scholar 

  30. Adelman, K. et al. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol. Cell 17, 103–112 (2005).

    CAS  Article  Google Scholar 

  31. Prather, D.M., Larschan, E. & Winston, F. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 2650–2659 (2005).

    CAS  Article  Google Scholar 

  32. Weilbaecher, R.G., Awrey, D.E., Edwards, A.M. & Kane, C.M. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J. Biol. Chem. 278, 24189–24199 (2003).

    CAS  Article  Google Scholar 

  33. Zhang, C., Yan, H. & Burton, Z.F. Combinatorial control of human RNA polymerase II (RNAP II) pausing and transcript cleavage by transcription factor IIF, hepatitis delta antigen, and stimulatory factor II. J. Biol. Chem. 278, 50101–50111 (2003).

    CAS  Article  Google Scholar 

  34. Tam, O.H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    CAS  Article  Google Scholar 

  35. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  Article  Google Scholar 

  36. Janowski, B.A. et al. Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat. Chem. Biol. 1, 216–222 (2005).

    CAS  Article  Google Scholar 

  37. Janowski, B.A. et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 13, 787–792 (2006).

    CAS  Article  Google Scholar 

  38. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    CAS  Article  Google Scholar 

  39. Ting, A.H., Schuebel, K.E., Herman, J.G. & Baylin, S.B. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat. Genet. 37, 906–910 (2005).

    CAS  Article  Google Scholar 

  40. Schwartz, J.C. et al. Antisense transcripts are targets for activating small RNAs. Nat. Struct. Mol. Biol. 15, 842–848 (2008).

    CAS  Article  Google Scholar 

  41. Lagonigro, M.S. et al. CTAB-urea method purifies RNA from melanin for cDNA microarray analysis. Pigment Cell Res. 17, 312–315 (2004).

    CAS  Article  Google Scholar 

  42. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS  Article  Google Scholar 

  43. Fromont-Racine, M., Bertrand, E., Pictet, R. & Grange, T. A highly sensitive method for mapping the 5′ termini of mRNAs. Nucleic Acids Res. 21, 1683–1684 (1993).

    CAS  Article  Google Scholar 

  44. Faulkner, G.J. et al. A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics 91, 281–288 (2008).

    CAS  Article  Google Scholar 

  45. Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275 (2002).

    CAS  Article  Google Scholar 

  46. Castillo-Davis, C.I. & Hartl, D.L. GeneMerge–post-genomic analysis, data mining, and hypothesis testing. Bioinformatics 19, 891–892 (2003).

    CAS  Article  Google Scholar 

  47. Tews, B. et al. Hypermethylation and transcriptional downregulation of the CITED4 gene at 1p34.2 in oligodendroglial tumours with allelic losses on 1p and 19q. Oncogene 26, 5010–5016 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Hasegawa, F. Hori, H. Sano for technical assistance. R.J.T. is supported by a US National Science Foundation Graduate Research Fellowship. N.C. is supported by a University of Queensland Postdoctoral Research Fellowship. A.R.R.F. is supported by a CJ Martin Fellowship from the Australian National Health and Medical Research Council (ID 428261). S.M.G. is supported by Australian NH&MRC Fellowship grant no. 455857. V.O. is supported by Telethon TCP00094, Associazione Italiana Riecrca sul Cancro (AIRC), Compagnia San Paolo. J.S.M. is supported by an Australian Research Council Federation Fellowship (ID FF0561986), the University of Queensland and the Queensland State Government. This work was also supported by grants for the Genome Network Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Y.H.), and Research Grant for the RIKEN Genome Exploration Research Project from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government, the RIKEN Frontier Research System, Functional RNA Research Program (Y.H.). We thank the reviewers for their insights and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

R.J.T. designed the bioinformatic experiments, led the analysis and wrote the manuscript. E.A.G. assisted with the chicken small RNA deep sequencing datasets analysis and helped to write the manuscript. N.C. performed the analysis of THP-1 gene expression. C.S. and S.S. created an in-house database and mapped THP-1 small RNA sequences. G.J.F. analyzed THP-1 promoter architecture. T.L. organized and analyzed THP-1 small RNA sequences. A.R.R.F. and S.M.G. advised on experimental design. K.S., K.I., T.A., M.N., A.K., K.H., C.K., M.M., H.N., S.F., J.K., C.O.D., D.A.H., H.S., V.O., P.C. and Y.H. generated the THP-1 small RNA, deepCAGE, microarray expression, and ChIP-chip data. P.C. and D.A.H. also helped to write the manuscript. J.S.M. helped to design the study and wrote the manuscript. For further information about the small RNA sequencing, contact V.O. (vorlando@vti.telethon.it) or P.C. (carninci@riken.jp). For further information about the bioinformatic analyses, contact R.J.T. (r.taft@imb.uq.edu.au).

Corresponding authors

Correspondence to Yoshihide Hayashizaki or John S Mattick.

Ethics declarations

Competing interests

A patent application based on this work has been made.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Methods, Supplementary Tables 1 and 2 (PDF 4858 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taft, R., Glazov, E., Cloonan, N. et al. Tiny RNAs associated with transcription start sites in animals. Nat Genet 41, 572–578 (2009). https://doi.org/10.1038/ng.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.312

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing