Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Refining analyses of copy number variation identifies specific genes associated with developmental delay

Abstract

Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Truncating SETBP1 mutations and associated phenotypes.
Figure 2: Truncating ZMYND11 mutations and associated phenotypes.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Cooper, G.M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaminsky, E.B. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13, 777–784 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moreno-De-Luca, D. et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol. Psychiatry 18, 1090–1095 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Vulto-van Silfhout, A.T. et al. Clinical significance of de novo and inherited copy-number variation. Hum. Mutat. 34, 1679–1687 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Allen, A.S. et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 518–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, Y.H. et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 93, 249–263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674–1682 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacquemont, S. et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am. J. Hum. Genet. 94, 415–425 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rudd, M.K. et al. Segmental duplications mediate novel, clinically relevant chromosome rearrangements. Hum. Mol. Genet. 18, 2957–2962 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burkardt, D.D. et al. Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25. Am. J. Med. Genet. A. 155A, 1336–1351 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Dabell, M.P. et al. Investigation of NRXN1 deletions: clinical and molecular characterization. Am. J. Med. Genet. A. 161A, 717–731 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Gimelli, S. et al. A rare 3q13.31 microdeletion including GAP43 and LSAMP genes. Mol. Cytogenet. 6, 52 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Madrigal, I., Martinez, M., Rodriguez-Revenga, L., Carrio, A. & Mila, M. 12p13 rearrangements: 6 Mb deletion responsible for ID/MCA and reciprocal duplication without clinical responsibility. Am. J. Med. Genet. A. 158A, 1071–1076 (2012).

    Article  PubMed  CAS  Google Scholar 

  21. Paciorkowski, A.R. et al. MEF2C haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics 14, 99–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenfeld, J.A. et al. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS ONE 4, e6568 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Stankiewicz, P. et al. Recurrent deletions and reciprocal duplications of 10q11.21q11.23 including CHAT and SLC18A3 are likely mediated by complex low-copy repeats. Hum. Mutat. 33, 165–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. van Bon, B.W. et al. The phenotype of recurrent 10q22q23 deletions and duplications. Eur. J. Hum. Genet. 19, 400–408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Döcker, D. et al. Further delineation of the SATB2 phenotype. Eur. J. Hum. Genet. 22, 1034–1039 (2014).

    Article  PubMed  CAS  Google Scholar 

  26. Thorsson, T. et al. Chromosomal imbalances in patients with congenital cardiac defects: a meta-analysis reveals novel potential critical regions involved in heart development. Congenit. Heart Dis. 10.1111/chd.12179 (11 April 2014).

  27. Le Meur, N. et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J. Med. Genet. 47, 22–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Ching, M.S. et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 153B, 937–947 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shuvarikov, A. et al. Recurrent HERV-H–mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum. Mutat. 34, 1415–1423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Endele, S. et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 42, 1021–1026 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Goffin, A., Hoefsloot, L.H., Bosgoed, E., Swillen, A. & Fryns, J.P. PTEN mutation in a family with Cowden syndrome and autism. Am. J. Med. Genet. 105, 521–524 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Koolen, D.A. et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat. Genet. 44, 639–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Lossin, C. A catalog of SCN1A variants. Brain Dev. 31, 114–130 (2009).

    Article  PubMed  Google Scholar 

  34. Santen, G.W. et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat. Genet. 44, 379–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Talkowski, M.E. et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am. J. Hum. Genet. 89, 551–563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O'Roak, B.J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fischbach, G.D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Bon, B.W. et al. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin. Genet. 79, 296–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Girirajan, S. et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am. J. Hum. Genet. 92, 221–237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Filges, I. et al. Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. J. Med. Genet. 48, 117–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Marseglia, G. et al. 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency associated with mild mental retardation and expressive speech impairment. Eur. J. Med. Genet. 55, 216–221 (2012).

    Article  PubMed  Google Scholar 

  43. DeScipio, C. et al. Subtelomeric deletion of chromosome 10p15.3: clinical findings and molecular cytogenetic characterization. Am. J. Med. Genet. A. 158A, 2152–2161 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ansieau, S. & Leutz, A. The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J. Biol. Chem. 277, 4906–4910 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Kateb, F. et al. Structural and functional analysis of the DEAF-1 and BS69 MYND domains. PLoS ONE 8, e54715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masselink, H. & Bernards, R. The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 19, 1538–1546 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Stefansson, H. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505, 361–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 42, 483–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Schinzel, A. & Giedion, A. A syndrome of severe midface retraction, multiple skull anomalies, clubfeet, and cardiac and renal malformations in sibs. Am. J. Med. Genet. 1, 361–375 (1978).

    Article  CAS  PubMed  Google Scholar 

  50. Makishima, H. et al. Somatic SETBP1 mutations in myeloid malignancies. Nat. Genet. 45, 942–946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piazza, R. et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat. Genet. 45, 18–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Wen, H. et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508, 263–268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, B. et al. BS69 undergoes SUMO modification and plays an inhibitory role in muscle and neuronal differentiation. Exp. Cell Res. 315, 3543–3553 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alliman, S. et al. Clinical and molecular characterization of individuals with recurrent genomic disorder at 10q22.3q23.2. Clin. Genet. 78, 162–168 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Hehir-Kwa, J.Y. et al. De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J. Med. Genet. 48, 776–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Duker, A.L. et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 18, 1196–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hubert, M. & Van der Veeken, S. Outlier detection for skewed data. J. Chemometr. 22, 235–246 (2008).

    Article  CAS  Google Scholar 

  59. Rosenfeld, J.A., Coe, B.P., Eichler, E.E., Cuckle, H. & Shaffer, L.G. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet. Med. 15, 478–481 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J.R. Stat. Soc. 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank F. Hormozdiari, M. Dennis and T. Brown for useful discussions and for editing the manuscript. B.P.C. is supported by a fellowship from the Canadian Institutes of Health Research. This study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk/. J.A.R. and B.S.T. are employees of Signature Genomics Laboratories, LLC, a subsidiary of PerkinElmer, Inc. This work was supported by US National Institute of Mental Health grant MH101221 and Paul G. Allen Family Foundation Award 11631 to E.E.E. E.E.E. is an Allen Distinguished Investigator and an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

B.P.C. and E.E.E. designed the study. B.P.C. performed the data analysis. B.P.C., K.W. and C.B. performed array CGH, MIP sequencing and Sanger validation. J.A.R. and B.S.T. supervised array CGH experiments and coordinated clinical data collection at Signature Genomics. B.W.M.v.B., A.T.V.-v.S., P.B., K.L.F., S.B., L.E.L.M.V., J.H.S.-H., A.H., D.L., D.A., N.B., P.J.L., I.E.S., A.A., R. Pettinato, R.T., N.d.L., M.R.F.R., H.P., E.T., M.F., M.S., H.C.M., E.H., C.R., J.G. and B.B.A.d.V. provided clinical samples for resequencing, clinical reports and inheritance testing. J.Y.H.-K., R. Pfundt and N.d.L. curated the Nijmegen de novo CNV calls. B.P.C., K.W., C.B., B.J.O., J.S., and E.E.E. designed the MIP gene panel. G.L.C. and H.C.M. identified two SETBP1 variants in an independent screen. N.K. curated published de novo mutations. B.P.C. and E.E.E. wrote the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Evan E Eichler.

Ethics declarations

Competing interests

J.A.R. and B.S.T. are employees of Signature Genomics Laboratories, LLC, a subsidiary of PerkinElmer, Inc. E.E.E. is on the scientific advisory board (SAB) of DNAnexus, Inc., and was an SAB member of Pacific Biosciences, Inc. (2009–2013) and SynapDx Corp. (2011–2013).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3, 5, 8, 9 and 11, and Supplementary Note. (PDF 3450 kb)

Supplementary Tables 4, 6, 7 and 10

Supplementary Tables 4, 6, 7 and 10. (XLSX 3564 kb)

Supplementary Data Set 1

CNV window counts and P values. (XLSX 1111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coe, B., Witherspoon, K., Rosenfeld, J. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 46, 1063–1071 (2014). https://doi.org/10.1038/ng.3092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3092

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research