Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics

Abstract

The ability to examine all chromatids from a single meiosis in yeast tetrads has been indispensable for defining the mechanisms of homologous recombination initiated by DNA double-strand breaks (DSBs). Using a broadly applicable strategy for the analysis of chromatids from a single meiosis at two recombination hotspots in mouse oocytes and spermatocytes, we demonstrate here the unidirectional transfer of information—gene conversion—in both crossovers and noncrossovers. Whereas gene conversion in crossovers is associated with reciprocal exchange, the unbroken chromatid is not altered in noncrossover gene conversion events, providing strong evidence that noncrossovers arise from a distinct pathway. Gene conversion frequently spares the binding site of the hotspot-specifying protein PRDM9, with the result that erosion of the hotspot is slowed. Thus, mouse tetrad analysis demonstrates how unique aspects of mammalian recombination mechanisms shape hotspot evolutionary dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mouse oocyte tetrad analysis provides direct evidence for meiotic gene conversion.
Figure 2: Mouse spermatocyte tetrads demonstrate that noncrossovers result from the unidirectional transfer of information.
Figure 3: PRDM9 binds to the center of the A3 hotspot.
Figure 4: Models of recombination and hotspot loss.

Similar content being viewed by others

References

  1. Hunter, N. in Topics in Current Genetics, Molecular Genetics of Recombination Vol. 17/2007 (eds. Aguilera, A. & Rothstein, R.) 381–442 (Springer-Verlag, Heidelberg, Germany, 2007).

  2. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    CAS  PubMed  Google Scholar 

  3. de Massy, B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu. Rev. Genet. 47, 563–599 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Winge, O. & Laustsen, O. On two types of spore germination, and on genetic segregations in Saccharomycetes demonstrated through single-spore culture. C. R. Trav. Lab. Carlsberg., Ser. Physiol. 22, 99–117 (1937).

    Google Scholar 

  5. Hurst, D.D., Fogel, S. & Mortimer, R.K. Conversion-associated recombination in yeast. Proc. Natl. Acad. Sci. USA 69, 101–105 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. & Stahl, F.W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Börner, G.V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    Article  PubMed  Google Scholar 

  9. Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double–Holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Martini, E. et al. Genome-wide analysis of heteroduplex DNA in mismatch repair–deficient yeast cells reveals novel properties of meiotic recombination pathways. PLoS Genet. 7, e1002305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McMahill, M.S., Sham, C.W. & Bishop, D.K. Synthesis-dependent strand annealing in meiosis. PLoS Biol. 5, e299 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Arnheim, N., Calabrese, P. & Tiemann-Boege, I. Mammalian meiotic recombination hot spots. Annu. Rev. Genet. 41, 369–399 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Baudat, F., Imai, Y. & de Massy, B. Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794–806 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Paigen, K. & Petkov, P. Mammalian recombination hot spots: properties, control and evolution. Nat. Rev. Genet. 11, 221–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hou, Y. et al. Genome analyses of single human oocytes. Cell 155, 1492–1506 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, S. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338, 1627–1630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, J., Fan, H.C., Behr, B. & Quake, S.R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cole, F., Keeney, S. & Jasin, M. Comprehensive, fine-scale dissection of homologous recombination outcomes at a hot spot in mouse meiosis. Mol. Cell 39, 700–710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guillon, H., Baudat, F., Grey, C., Liskay, R.M. & de Massy, B. Crossover and noncrossover pathways in mouse meiosis. Mol. Cell 20, 563–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Guillon, H. & de Massy, B. An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat. Genet. 32, 296–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Jeffreys, A.J. & May, C.A. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat. Genet. 36, 151–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ng, S.H., Parvanov, E., Petkov, P.M. & Paigen, K. A quantitative assay for crossover and noncrossover molecular events at individual recombination hotspots in both male and female gametes. Genomics 92, 204–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Baudat, F. & de Massy, B. Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS Genet. 3, e100 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Keeney, S. in Recombination and Meiosis (eds. Egel, R. & Lankenau, D.-H.) 81–123 (Springer-Verlag, Berlin and Heidelberg, Germany, 2007).

  25. Cole, F., Keeney, S. & Jasin, M. Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev. 24, 1201–1207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kauppi, L., Jeffreys, A.J. & Keeney, S. Where the crossovers are: recombination distributions in mammals. Nat. Rev. Genet. 5, 413–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R.D. & Petukhova, G.V. Genetic recombination is directed away from functional genomic elements in mice. Nature 485, 642–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327, 876–879 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Parvanov, E.D., Petkov, P.M. & Paigen, K. Prdm9 controls activation of mammalian recombination hotspots. Science 327, 835 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Billings, T. et al. DNA binding specificities of the long zinc-finger recombination protein PRDM9. Genome Biol. 14, R35 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grey, C. et al. Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination. PLoS Biol. 9, e1001176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeffreys, A.J. & Neumann, R. Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat. Genet. 31, 267–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Buard, J., Barthes, P., Grey, C. & de Massy, B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J. 28, 2616–2624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bastos, H. et al. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A 65, 40–49 (2005).

    Article  PubMed  Google Scholar 

  36. Cole, F. & Jasin, M. Isolation of meiotic recombinants from mouse sperm. Methods Mol. Biol. 745, 251–282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baker, S.M. et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 13, 336–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Woods, L.M. et al. Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J. Cell Biol. 145, 1395–1406 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L.M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bois, P.R. A highly polymorphic meiotic recombination mouse hot spot exhibits incomplete repair. Mol. Cell. Biol. 27, 7053–7062 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeffreys, A.J. & Neumann, R. Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum. Mol. Genet. 14, 2277–2287 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Odenthal-Hesse, L., Berg, I.L., Veselis, A., Jeffreys, A.J. & May, C.A. Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive. PLoS Genet. 10, e1004106 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sarbajna, S. et al. A major recombination hotspot in the XqYq pseudoautosomal region gives new insight into processing of human gene conversion events. Hum. Mol. Genet. 21, 2029–2038 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Yauk, C.L., Bois, P.R. & Jeffreys, A.J. High-resolution sperm typing of meiotic recombination in the mouse MHC Eβ gene. EMBO J. 22, 1389–1397 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, L. & Hickson, I.D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, S.Y. et al. Global analysis of the meiotic crossover landscape. Dev. Cell 15, 401–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kauppi, L. et al. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev. 27, 873–886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baker, C.L., Walker, M., Kajita, S., Petkov, P.M. & Paigen, K. PRDM9 binding organizes hotspot nucleosomes and limits Holliday junction migration. Genome Res. 24, 724–732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Radford, S.J., Sabourin, M.M., McMahan, S. & Sekelsky, J. Meiotic recombination in Drosophila Msh6 mutants yields discontinuous gene conversion tracts. Genetics 176, 53–62 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oh, S.D. et al. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259–272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oh, S.D., Lao, J.P., Taylor, A.F., Smith, G.R. & Hunter, N. RecQ helicase, Sgs1, and XPF family endonuclease, Mus81-Mms4, resolve aberrant joint molecules during meiotic recombination. Mol. Cell 31, 324–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldfarb, T. & Lichten, M. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis. PLoS Biol. 8, e1000520 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Boulton, A., Myers, R.S. & Redfield, R.J. The hotspot conversion paradox and the evolution of meiotic recombination. Proc. Natl. Acad. Sci. USA 94, 8058–8063 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coop, G. & Myers, S.R. Live hot, die young: transmission distortion in recombination hotspots. PLoS Genet. 3, e35 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Calabrese, P. A population genetics model with recombination hotspots that are heterogeneous across the population. Proc. Natl. Acad. Sci. USA 104, 4748–4752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pineda-Krch, M. & Redfield, R.J. Persistence and loss of meiotic recombination hotspots. Genetics 169, 2319–2333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anderson, L.K., Reeves, A., Webb, L.M. & Ashley, T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151, 1569–1579 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cole, F. et al. Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat. Cell Biol. 14, 424–430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shiroishi, T., Sagai, T., Hanzawa, N., Gotoh, H. & Moriwaki, K. Genetic control of sex-dependent meiotic recombination in the major histocompatibility complex of the mouse. EMBO J. 10, 681–686 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hanneman, W.H., Schimenti, K.J. & Schimenti, J.C. Molecular analysis of gene conversion in spermatids from transgenic mice. Gene 200, 185–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Jeffreys, A.J., Neumann, R. & Wilson, V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60, 473–485 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Belloc, F. et al. A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry 17, 59–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Barchi, M. et al. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes. PLoS Genet. 4, e1000076 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Jasin, Keeney and de Massy laboratories, especially J. Lange, E. de Boer, S. Tischfield, S. Yamada and S. Peterson. We also thank P. Hunt (Washington State University) for encouraging the oocyte experiments, A. Gabow (Memorial Sloan Kettering Cancer Center) and Y. Lu (University of Texas MD Anderson Cancer Center) for fixation calculations, and the Réseau des Animaleries de Montpellier (RAM) and D. Haddou for management of mice. This work was supported by R.L. Kirschstein National Research Service Award F32HD51392 (F.C.) and Cancer Prevention and Research Institute of Texas award R1213 (F.C.), the Centre National de la Recherche Scientifique (F.B., C.G. and B.d.M.), the Agence Nationale pour la Recherche (program ANR-09-BLAN-0269-01 to B.d.M.), the Association pour la Recherche contre le Cancer (B.d.M.) and US National Institutes of Health grants R01GM105421 (M.J. and S.K.) and R01HD53855 (S.K. and M.J.). This paper is dedicated to the memory of our colleague Jérôme Buard.

Author information

Authors and Affiliations

Authors

Contributions

F.C., F.B., S.K., B.d.M. and M.J. conceived the study, interpreted the data and wrote the manuscript. F.C. and F.B. performed the spermatocyte and oocyte (and associated) recombination experiments, respectively. F.B. and C.G. performed the southwestern blotting. F.C., M.J. and S.K. estimated the fixation rates.

Corresponding authors

Correspondence to Scott Keeney, Bernard de Massy or Maria Jasin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Noncrossovers at the Psmb9 hotspot in B10.A × SGR hybrids determined by analysis of DNA isolated from ovaries and sperm, respectively.

Noncrossovers were identified on the B10.A chromosome at the seven queried polymorphisms (asterisks) in pooled ovaries (a) and sperm (b) as described23. See Supplementary Table 1 for detailed results. Once a noncrossover was identified at the queried polymorphism, the extent of gene conversion was assessed by sequencing the PCR product. For pooled ovaries, DNA was extracted from the ovaries of 2 newborn litters (6 and 5 females, respectively), and an estimated 4,739 genomes from oocytes were tested. For sperm, 8,981 genomes from a single 4-month-old mouse were tested for the –87 polymorphism and 15,739 genomes were tested for the other 6 polymorphisms. The polymorphisms known to affect PRDM9 binding are 70 and, to a lesser extent, 87, which are located 17 bp apart (red arrowhead32). The mean minimal and maximal gene conversion tracts are as indicated. In these particular experiments, the overall frequencies of detected noncrossovers (on the B10.A chromosome; representing >90% of noncrossover events in this hybrid) and crossovers (SGR-B10.A orientation only), respectively, were 0.89% and 0.40% in oocytes and 0.45% and 0.16% in sperm.

Supplementary Figure 2 Noncrossovers from sperm DNA at the A3 hotspot in A/J × DBA/2J hybrids.

(a) Noncrossovers were identified using established methods36 on the DBA/2J chromosome in sperm DNA isolated from the same mice used for tetrad analysis. The mean minimal and maximal gene conversion tracts are as indicated. A nearly identical frequency (Table 1) and similar distribution of noncrossovers were obtained. Co-conversions were observed at a lower frequency in spermatocytes (6 of 111 noncrossovers) than in sperm (13 of 78 noncrossovers; P = 0.0142), although whether this difference reflects a biological distinction between the cell types is unclear. (b) For each polymorphism, the frequency and distribution of noncrossovers on the DBA/2J chromosome was compared between tetrad analysis (top; the same data as shown in Fig. 2e) to sperm (bottom). Polymorphisms analyzed with oligonucleotide probes new to this study are indicated by dots.

Supplementary Figure 3 Single-chromatid analysis cannot distinguish recombination mechanisms because gene conversion tracts are not identified.

(a) Examples of two possible crossovers initiated by a DSB on the frequently cleaved chromosome. In the example on the left, the crossover breakpoints flank the site of the DSB such that the gene conversion tract encompasses the center of the hotspot. In the example on the right, both crossover breakpoints occur to one side of the DSB, such that the conversion tract does not overlap the center of the hotspot. (b) Example of a crossover initiated by a DSB on the infrequently cleaved chromosome in which the crossover breakpoints flank the site of the DSB. Note that the breakpoint on the lower chromosome (breakpoint 3b) is similar to that from the off-center conversion in a (breakpoint 2b). (c) Distribution of crossover breakpoints at the A3 hotspot from A/J × DBA/2J mice previously determined from sperm analysis18. The A/J to DBA/2J (top) and DBA/2J to A/J (bottom) breakpoints are shifted relative to each other (asymmetric), consistent with substantially more frequent initiation on the DBA/2J chromosome. Vertical lines represent the midpoint for each orientation. The intervals in which the crossover breakpoints from a and b occur are indicated. (d) Southwestern analysis of the PRDM9wm7 protein for the A3 hotspot. The horizontal bars represent the positions of the eight overlapping 250-bp DNA probes generated for the A/J and DBA/2J genotype. Representative southwesterns for each probe against His-tagged PRDM9wm7 are shown along with a loading control (probed with antibody to His) on the far right.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–3. (PDF 1801 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, F., Baudat, F., Grey, C. et al. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics. Nat Genet 46, 1072–1080 (2014). https://doi.org/10.1038/ng.3068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing