Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

Abstract

We performed a multistage genome-wide association study including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT, per-allele odds ratio (OR) = 0.79, 95% confidence interval (CI) 0.74–0.84, P = 3.0 × 10−12), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2, OR = 1.46, 95% CI 1.30–1.65, P = 1.1 × 10−10), rs9581943 at 13q12.2 (PDX1, OR = 1.15, 95% CI 1.10–1.20, P = 2.4 × 10−9) and rs16986825 at 22q12.1 (ZNRF3, OR = 1.18, 95% CI 1.12–1.25, P = 1.2 × 10−8). We identified an independent signal in exon 2 of TERT at the established region 5p15.33 (rs2736098, OR = 0.80, 95% CI 0.76–0.85, P = 9.8 × 10−14). We also identified a locus at 8q24.21 (rs1561927, P = 1.3 × 10−7) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association results, recombination hotspots and LD plots for new pancreatic cancer susceptibility regions and one suggestive region.

Similar content being viewed by others

References

  1. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    PubMed  Google Scholar 

  2. Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49, 1374–1403 (2013).

    CAS  PubMed  Google Scholar 

  3. Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 362, 1605–1617 (2010).

    CAS  PubMed  Google Scholar 

  4. Klein, A.P. Genetic susceptibility to pancreatic cancer. Mol. Carcinog. 51, 14–24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Amundadottir, L. et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Petersen, G.M. et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42, 224–228 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, C. et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat. Genet. 44, 62–66 (2012).

    CAS  Google Scholar 

  8. Low, S.K. et al. Genome-wide association study of pancreatic cancer in Japanese population. PLoS ONE 5, e11824 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Wang, Z. et al. Improved imputation of common and uncommon SNPs with a new reference set. Nat. Genet. 44, 6–7 (2012).

    CAS  Google Scholar 

  10. Campa, D. et al. Genetic susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic Disease ReseArch (PANDoRA) consortium. Dig. Liver Dis. 45, 95–99 (2013).

    CAS  PubMed  Google Scholar 

  11. Innocenti, F. et al. A genome-wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303. Clin. Cancer Res. 18, 577–584 (2012).

    CAS  PubMed  Google Scholar 

  12. Adams, J.C., Seed, B. & Lawler, J. Muskelin, a novel intracellular mediator of cell adhesive and cytoskeletal responses to thrombospondin-1. EMBO J. 17, 4964–4974 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernandez-Zapico, M.E. et al. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem. J. 435, 529–537 (2011).

    CAS  PubMed  Google Scholar 

  14. Small, K.S. et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 43, 561–564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Barrett, A., Pellet-Many, C., Zachary, I.C., Evans, I.M. & Frankel, P. p130Cas: a key signalling node in health and disease. Cell. Signal. 25, 766–777 (2013).

    CAS  PubMed  Google Scholar 

  16. Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. & Defilippi, P. Integrin signalling adaptors: not only figurants in the cancer story. Nat. Rev. Cancer 10, 858–870 (2010).

    CAS  PubMed  Google Scholar 

  17. Whitcomb, D.C. & Lowe, M.E. Human pancreatic digestive enzymes. Dig. Dis. Sci. 52, 1–17 (2007).

    CAS  PubMed  Google Scholar 

  18. Whitcomb, D.C. Genetic aspects of pancreatitis. Annu. Rev. Med. 61, 413–424 (2010).

    CAS  PubMed  Google Scholar 

  19. Chen, J.M. & Ferec, C. Chronic pancreatitis: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 10, 63–87 (2009).

    CAS  PubMed  Google Scholar 

  20. Barrett, J.C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Harder, M.N. et al. Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate with decreased beta-cell function whereas risk alleles near ANKRD55 and GRB14 associate with decreased insulin sensitivity in the Danish Inter99 cohort. J. Clin. Endocrinol. Metab. 98, E801–E806 (2013).

    CAS  PubMed  Google Scholar 

  23. 't Hart, L.M. et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes 62, 3275–3281 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Stoffers, D.A., Zinkin, N.T., Stanojevic, V., Clarke, W.L. & Habener, J.F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15, 106–110 (1997).

    CAS  PubMed  Google Scholar 

  25. MacDonald, R.J., Swift, G.H. & Real, F.X. Transcriptional control of acinar development and homeostasis. Prog. Mol. Biol. Transl. Sci. 97, 1–40 (2010).

    CAS  PubMed  Google Scholar 

  26. Vaxillaire, M., Bonnefond, A. & Froguel, P. The lessons of early-onset monogenic diabetes for the understanding of diabetes pathogenesis. Best Pract. Res. Clin. Endocrinol. Metab. 26, 171–187 (2012).

    CAS  PubMed  Google Scholar 

  27. Ohlsson, H., Karlsson, K. & Edlund, T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 12, 4251–4259 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Manning, A.K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hao, H.X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin–sensitive manner. Nature 485, 195–200 (2012).

    CAS  PubMed  Google Scholar 

  30. Antoni, L., Sodha, N., Collins, I. & Garrett, M.D. CHK2 kinase: cancer susceptibility and cancer therapy—two sides of the same coin? Nat. Rev. Cancer 7, 925–936 (2007).

    CAS  PubMed  Google Scholar 

  31. Gronwald, J. et al. Cancer risks in first-degree relatives of CHEK2 mutation carriers: effects of mutation type and cancer site in proband. Br. J. Cancer 100, 1508–1512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fearnhead, P. SequenceLDhot: detecting recombination hotspots. Bioinformatics 22, 3061–3066 (2006).

    CAS  PubMed  Google Scholar 

  33. Ballew, B.J. & Savage, S.A. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev. Hematol. 6, 327–337 (2013).

    CAS  PubMed  Google Scholar 

  34. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    CAS  PubMed  Google Scholar 

  35. James, M.A., Vikis, H.G., Tate, E., Rymaszewski, A.L. & You, M. CRR9/CLPTM1L regulates cell survival signaling and is required for Ras transformation and lung tumorigenesis. Cancer Res. 74, 1116–1127 (2014).

    CAS  PubMed  Google Scholar 

  36. Jia, J. et al. CLPTM1L promotes growth and enhances aneuploidy in pancreatic cancer cells. Cancer Res. 74, 2785–2795 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rafnar, T. et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41, 221–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Speedy, H.E. et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat. Genet. 46, 56–60 (2014).

    CAS  PubMed  Google Scholar 

  39. McKay, J.D. et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40, 1404–1406 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bojesen, S.E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 45, 371–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kote-Jarai, Z. et al. Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Hum. Mol. Genet. 22, 2520–2528 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grisanzio, C. & Freedman, M.L. Chromosome 8q24–associated cancers and MYC. Genes Cancer 1, 555–559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huppi, K., Pitt, J.J., Wahlberg, B.M. & Caplen, N.J. The 8q24 gene desert: an oasis of non-coding transcriptional activity. Front. Genet. 3, 69 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Pharoah, P.D. et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. 45, 362–370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahmadiyeh, N. et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl. Acad. Sci. USA 107, 9742–9746 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer, K.B. et al. A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet. 7, e1002165 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    CAS  PubMed  Google Scholar 

  48. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, T.P. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26, 2474–2476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, A.H., Heidtman, K., Hotamisligil, G.S. & Glimcher, L.H. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc. Natl. Acad. Sci. USA 108, 8885–8890 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tabas-Madrid, D., Nogales-Cadenas, R. & Pascual-Montano, A. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 40, W478–W483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Alavanja, M.C. et al. Cancer and noncancer risk to women in agriculture and pest control: the Agricultural Health Study. J. Occup. Med. 36, 1247–1250 (1994).

    CAS  PubMed  Google Scholar 

  55. Giles, G.G. & English, D.R. The Melbourne Collaborative Cohort Study. IARC Sci. Publ. 156, 69–70 (2002).

    CAS  PubMed  Google Scholar 

  56. Kolonel, L.N. et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am. J. Epidemiol. 151, 346–357 (2000).

    CAS  PubMed  Google Scholar 

  57. Lippman, S.M. et al. Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Natl. Cancer Inst. 97, 94–102 (2005).

    CAS  PubMed  Google Scholar 

  58. White, E. et al. VITamins And Lifestyle cohort study: study design and characteristics of supplement users. Am. J. Epidemiol. 159, 83–93 (2004).

    PubMed  Google Scholar 

  59. Porta, M. et al. In pancreatic ductal adenocarcinoma blood concentrations of some organochlorine compounds and coffee intake are independently associated with KRAS mutations. Mutagenesis 24, 513–521 (2009).

    CAS  PubMed  Google Scholar 

  60. Samanic, C. et al. Smoking and bladder cancer in Spain: effects of tobacco type, timing, environmental tobacco smoke, and gender. Cancer Epidemiol. Biomarkers Prev. 15, 1348–1354 (2006).

    PubMed  Google Scholar 

  61. Berndt, S.I. et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat. Genet. 45, 868–876 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rothman, N. et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet. 42, 978–984 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Figueroa, J.D. et al. Genome-wide association study identifies multiple loci associated with bladder cancer risk. Hum. Mol. Genet. 23, 1387–1398 (2014).

    CAS  PubMed  Google Scholar 

  64. De Vivo, I. et al. Genome-wide association study of endometrial cancer in E2C2. Hum. Genet. 133, 211–224 (2014).

    CAS  PubMed  Google Scholar 

  65. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  PubMed  Google Scholar 

  66. de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    CAS  PubMed  Google Scholar 

  68. Wu, C. et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat. Genet. 44, 1090–1097 (2012).

    CAS  PubMed  Google Scholar 

  69. Thornquist, M.D. et al. Statistical design and monitoring of the Carotene and Retinol Efficacy Trial (CARET). Control. Clin. Trials 14, 308–324 (1993).

    CAS  PubMed  Google Scholar 

  70. Landi, M.T. et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum. Genet. 85, 679–691 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fearnhead, P., Harding, R.M., Schneider, J.A., Myers, S. & Donnelly, P. Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots. Genetics 167, 2067–2081 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Crawford, D.C. et al. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat. Genet. 36, 700–706 (2004).

    CAS  PubMed  Google Scholar 

  74. Luna, A. & Nicodemus, K.K. snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics 23, 774–776 (2007).

    CAS  PubMed  Google Scholar 

  75. Lee, S.H., Wray, N.R., Goddard, M.E. & Visscher, P.M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded in whole or in part with federal funds from the National Cancer Institute (NCI), US National Institutes of Health (NIH) under contract number HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, and mention of trade names, commercial products or organizations does not imply endorsement by the US government. Major support for PanScan III sample identification and processing was provided by the Lustgarten Foundation for Pancreatic Cancer Research. Additional support was received from NIH/NCI K07 CA140790, the American Society of Clinical Oncology Conquer Cancer Foundation, the Howard Hughes Medical Institute, the Lustgarten Foundation, the Robert T. and Judith B. Hale Fund for Pancreatic Cancer Research and Promises for Purple to B.M.W. A full list of acknowledgments for each participating study is provided in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

B.M.W., C.R., P.K., C.K., G.M.P., P.H., C.F., S.J.C., R.S.S.-S. and L.T.A. organized and designed the study. B.M.W., C.R., F.C., L.B., R.S.S.-S. and L.T.A. conducted and supervised the genotyping of samples. B.M.W., C.R., P.K., C.K., Z.W., R.B., R.S.S.-S. and L.T.A. contributed to the design and execution of statistical analyses. B.M.W., R.S.S.-S. and L.T.A. wrote the first draft of the manuscript. B.M.W., C.R., P.K., C.K., G.M.P., A.A.A., L.B.-F., P.M.B., J.B., F.C., E.J.D., S.G., G.G.G., G.E.G., P.J.G., E.J.J., A.K., A.P.K., L.N.K., M.H.K., D.L., N.M., S.H.O., H.A.R., H.D.S., K.V., E.W., W.Z., C.C.A., D.A., G.A., M.A.A., D.B., S.I.B., M.-C.B.-R., M.B., M.W.B., H.B.B.-d.-M., P.B., D.C., N.E.C., G.C., C.C., M.C., E.C., J.E., N.F., J.M.G., N.A.G., E.L.G., M. Goggins, M.J.G., M. Gross, C.A.H., M.H., K.J.H., B.E.H., E.A.H., N.H., D.J.H., F.I., M.J., R.K., T.J.K., K.-T.K., E.A.K., M.K., V.K., J.K., R.C.K., A.L., M.T.L., S.L., L.L.M., A.M., S.M., R.L.M., Y.N., A.L.O., K.O., A.V.P., P.H.M.P., U.P., R.P., A.P., M.P., F.X.R., E.R., N.R., A.S., X.-O.S., D.T.S., P.S., M.S., R.T.-W., P.R.T., G.E.T., M.T., A.T., G.S.T., D.T., P.V., J.W.-W., N.W., C.W., H.Y., K.Y., A.Z.-J., R.H., P.H., C.F., S.J.C., R.S.S.-S. and L.T.A. conducted the epidemiological studies and contributed samples to the GWAS and/or follow-up genotyping. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Rachael S Stolzenberg-Solomon or Laufey T Amundadottir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Flow diagram of PanScan III study design

A schematic figure showing stage 1, stage 2 and replication stage with a total of 7,683 case and 14,397 control subjects included in the final analysis. Numbers of cases and controls in each stage are indicated as well as the array type, imputation and P- value threshold for SNPs moved forward to replication.

Supplementary Figure 2 Risk allele counts (a) and odds ratios (95% confidence intervals) (b) for pancreatic cancer for a genetic risk score of the ten susceptibility loci identified in PanScan I, II, and III.

(a) Percentage of cases and controls with each total number of risk alleles. Absolute number of participants provided above each vertical bar. (b) Results from unconditional logistic regression of the pancreatic cancer genotype score in participants from Stage 1 and Stage 2 of the PanScan III GWAS. For stage 1, model adjusted for age, sex, geographic region, and significant principal components. For stage 2, model adjusted for age, sex, study, and significant principal components. Referent is the most prevalent risk allele count in controls (n=10 risk alleles).

Supplementary Figure 3 Plot of estimated admixture for individuals in stage 1 of PanScan III GWAS.

For details, see Online Methods. Individuals with <80% European ancestry were excluded from the main association analysis. Individuals with Asian ancestry from SMWHS were analyzed separately and included case and control subjects from SMWHS in stages 1 and 2 of PanScan III and control subjects from SMWHS that were previously genotyped.

Supplementary Figure 4 Plot of top eigenvectors from stage 1 of PanScan III GWAS based on principal components analysis.

For details, see Online Methods.

Supplementary Figure 5 Quantile-quantile (Q-Q) plot of the association results in stages 1 and 2 of the PanScan III GWAS

Supplementary Figure 6 Manhattan plot showing statistical significance of the association for all genotyped SNPs in stages 1 and 2 of PanScan III GWAS

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–12 and Supplementary Note (PDF 2802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolpin, B., Rizzato, C., Kraft, P. et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet 46, 994–1000 (2014). https://doi.org/10.1038/ng.3052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing