Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increased LIS1 expression affects human and mouse brain development

Abstract

Deletions of the PAFAH1B1 gene (encoding LIS1) in 17p13.3 result in isolated lissencephaly sequence, and extended deletions including the YWHAE gene (encoding 14-3-3ε) cause Miller-Dieker syndrome. We identified seven unrelated individuals with submicroscopic duplication in 17p13.3 involving the PAFAH1B1 and/or YWHAE genes, and using a 'reverse genomics' approach, characterized the clinical consequences of these duplications. Increased PAFAH1B1 dosage causes mild brain structural abnormalities, moderate to severe developmental delay and failure to thrive. Duplication of YWHAE and surrounding genes increases the risk for macrosomia, mild developmental delay and pervasive developmental disorder, and results in shared facial dysmorphologies. Transgenic mice conditionally overexpressing LIS1 in the developing brain showed a decrease in brain size, an increase in apoptotic cells and a distorted cellular organization in the ventricular zone, including reduced cellular polarity but preserved cortical cell layer identity. Collectively, our results show that an increase in LIS1 expression in the developing brain results in brain abnormalities in mice and humans.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Seven individuals with duplications of the MDS region identified by array CGH.
Figure 2: Facial features and mild brain structural anomalies identified by brain MRI.
Figure 3: Rearrangement mechanisms revealed by high-density array CGH and junction sequences.
Figure 4: LIS1-overexpressing mice have smaller brains with a disorganized ventricular zone.
Figure 5: LIS1-overexpressing mice show reduced cell polarity in the ventricular zone.
Figure 6: Radial and tangential migration is delayed in LIS1-overexpressing mice.
Figure 7: Clinical manifestations observed in affected individuals with deletions or duplications of dosage-sensitive genes within the MDS region and comparable phenotypes in transgenic mice.

References

  1. Lupski, J.R. Genomic rearrangements and sporadic disease. Nat. Genet. 39, S43–S47 (2007).

    CAS  Article  Google Scholar 

  2. Reiner, O. et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364, 717–721 (1993).

    CAS  Article  Google Scholar 

  3. Barkovich, A.J., Kuzniecky, R.I., Jackson, G.D., Guerrini, R. & Dobyns, W.B. A developmental and genetic classification for malformations of cortical development. Neurology 65, 1873–1887 (2005).

    CAS  Article  Google Scholar 

  4. Harding, B. in Dysplasias of Cerebral Cortex and Epilepsy (ed. Guerrini, R.) 81–88 (Lippincott-Raven, Philadelphia, 1996).

  5. Kamiya, A. et al. A schizophrenia-associated mutation of Drosoph. Inf. Serv.C1 perturbs cerebral cortex development. Nat. Cell Biol. 7, 1167–1178 (2005).

    Article  Google Scholar 

  6. Schumacher, J. et al. Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. Am. J. Hum. Genet. 78, 52–62 (2006).

    CAS  Article  Google Scholar 

  7. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008).

    CAS  Article  Google Scholar 

  8. Xu, B. et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet. 40, 880–885 (2008).

    CAS  Article  Google Scholar 

  9. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    CAS  Article  Google Scholar 

  10. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

  11. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    CAS  Article  Google Scholar 

  12. Weiss, L.A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    CAS  Article  Google Scholar 

  13. Kumar, R.A. et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2008).

    CAS  Article  Google Scholar 

  14. Cardoso, C. et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am. J. Hum. Genet. 72, 918–930 (2003).

    CAS  Article  Google Scholar 

  15. Toyo-oka, K. et al. 14–3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat. Genet. 34, 274–285 (2003).

    CAS  Article  Google Scholar 

  16. Mikhail, F.M. et al. Complete trisomy 17p syndrome in a girl with der(14)t(14;17)(p11.2;p11.2). Am. J. Med. Genet. A. 140, 1647–1654 (2006).

    Article  Google Scholar 

  17. Morelli, S.H., Deubler, D.A., Brothman, L.J., Carey, J.C. & Brothman, A.R. Partial trisomy 17p detected by spectral karyotyping. Clin. Genet. 55, 372–375 (1999).

    CAS  Article  Google Scholar 

  18. Cahana, A. et al. Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc. Natl. Acad. Sci. USA 98, 6429–6434 (2001).

    CAS  Article  Google Scholar 

  19. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).

    CAS  Article  Google Scholar 

  20. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    CAS  Article  Google Scholar 

  21. Tsai, J.W., Bremner, K.H. & Vallee, R.B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat. Neurosci. 10, 970–979 (2007).

    CAS  Article  Google Scholar 

  22. Tsai, J.W., Chen, Y., Kriegstein, A.R. & Vallee, R.B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    CAS  Article  Google Scholar 

  23. Peiffer, D.A. et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 16, 1136–1148 (2006).

    CAS  Article  Google Scholar 

  24. Lee, J.A., Carvalho, C.M. & Lupski, J.R.A. DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235–1247 (2007).

    CAS  Article  Google Scholar 

  25. Dobyns, W.B., Reiner, O., Carrozzo, R. & Ledbetter, D.H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Assoc. 270, 2838–2842 (1993).

    CAS  Article  Google Scholar 

  26. Pilz, D.T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

    CAS  Article  Google Scholar 

  27. Chenn, A., Zhang, Y.A., Chang, B.T. & McConnell, S.K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci. 11, 183–193 (1998).

    CAS  Article  Google Scholar 

  28. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    CAS  Article  Google Scholar 

  29. Lupski, J.R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998).

    CAS  Article  Google Scholar 

  30. Feller, S.M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20, 6348–6371 (2001).

    CAS  Article  Google Scholar 

  31. Assadi, A.H. et al. Interaction of reelin signaling and Lis1 in brain development. Nat. Genet. 35, 270–276 (2003).

    CAS  Article  Google Scholar 

  32. Ballif, B.A. et al. Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr. Biol. 14, 606–610 (2004).

    CAS  Article  Google Scholar 

  33. Chen, K. et al. Interaction between Dab1 and CrkII is promoted by Reelin signaling. J. Cell Sci. 117, 4527–4536 (2004).

    CAS  Article  Google Scholar 

  34. Wall, M.A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).

    CAS  Article  Google Scholar 

  35. Ligon, L.A., Karki, S., Tokito, M. & Holzbaur, E.L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nat. Cell Biol. 3, 913–917 (2001).

    CAS  Article  Google Scholar 

  36. Yingling, J. et al. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132, 474–486 (2008).

    CAS  Article  Google Scholar 

  37. Hirokawa, N. & Takemura, R. Molecular motors in neuronal development, intracellular transport and diseases. Curr. Opin. Neurobiol. 14, 564–573 (2004).

    CAS  Article  Google Scholar 

  38. Reiner, O., Sapoznik, S. & Sapir, T. Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more. Neuromolecular Med. 8, 547–565 (2006).

    CAS  Article  Google Scholar 

  39. Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 9, 1099–1107 (2006).

    CAS  Article  Google Scholar 

  40. Chen, L. et al. Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proc. Natl. Acad. Sci. USA 103, 16520–16525 (2006).

    CAS  Article  Google Scholar 

  41. Kholmanskikh, S.S., Dobrin, J.S., Wynshaw-Boris, A., Letourneau, P.C. & Ross, M.E. Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673–8681 (2003).

    CAS  Article  Google Scholar 

  42. Kholmanskikh, S.S. et al. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat. Neurosci. 9, 50–57 (2006).

    CAS  Article  Google Scholar 

  43. Shen, Y. et al. Nudel binds Cdc42GAP to modulate Cdc42 activity at the leading edge of migrating cells. Dev. Cell 14, 342–353 (2008).

    CAS  Article  Google Scholar 

  44. Cheung, S.W. et al. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet. Med. 7, 422–432 (2005).

    Article  Google Scholar 

  45. Lu, X. et al. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS ONE 2, e327 (2007).

    Article  Google Scholar 

  46. Ou, Z. et al. BAC-emulation oligonucleotide arrays for targeted clinical array CGH analyses. Genet. Med. 10, 278–289 (2008).

    CAS  Article  Google Scholar 

  47. Lobe, C.G. et al. Z/AP, a double reporter for cre-mediated recombination. Dev. Biol. 208, 281–292 (1999).

    CAS  Article  Google Scholar 

  48. Coquelle, F.M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002).

    CAS  Article  Google Scholar 

  49. Hebert, J.M. & McConnell, S.K. Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev. Biol. 222, 296–306 (2000).

    CAS  Article  Google Scholar 

  50. Benard, V., Bohl, B.P. & Bokoch, G.M. Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the participating families for their cooperation in the study, the members of the Chromosomal Microarray Analysis and Cytogenetic/FISH laboratories for technical assistance, G. Eichele for help with the in situ hybridization experiments, E. Arama and S. Haiderleu for useful comments and advice, S. McConnell for the Foxg1(Cre) mice and M. O'Gorman (Children's Memorial Hospital, Chicago) for assistance with specimen collection. The work was supported in part by the Israeli Science Foundation (grant no. 270/04 to O.R. and an equipment grant), the Foundation Jérôme Lejeune, the Minerva Foundation with funding from the Federal German Ministry for Education and Research, German-Israeli collaboration grant Gr-1905, March of Dimes grant 6-FY07-388, collaborative BSF grant 2007081 (to O.R. and J.R.L.), a grant from the Paul Godfrey Research Foundation in Children's Diseases, the Benoziyo Center for Neurological Diseases, the Kekst Center, the Forcheimer Center, a Weizmann-Pasteur collaborative grant, a research grant from the Michigan Women of Wisdom Fund to support Weizmann Women scientists, support from Maurice Janin, the Jewish Communal Fund, Albert Einstein College of Medicine of Yeshiva University, the David and Fela Shapell Family Center research grant for Genetic Disorders Research, grants DIGESIC-MEC BFU2005-09085 and Ingenio 2010 MEC-CONSOLIDER CSD2007-00023 (to S.M.), support from EU grant LSHG-CT-2004-512003, the Baylor Medical Genetics Laboratories, the Mental Retardation Developmental Disabilities Research Center (HD024064) and a Program Project grant (P01 HD39420) from the National Institute of Child Health and Human Development (to J.R.L.). O.R. is an Incumbent of the Bernstein-Mason professorial chair of Neurochemistry.

Author information

Authors and Affiliations

Authors

Contributions

W.B. coordinated human studies and conducted real time RT-PCR assays. T.S. produced transgenic mice and conducted mouse studies. O.A.S. recruited patients and reviewed clinical data. F.Z. conducted high-density array CGH and breakpoint analyses. M.A.W. carried out cell culture. J.V.H. reviewed the MRI data. T.L., V.S. and S.M. assisted in mouse analyses. Y.Y. provided GAD67-GFP mice. D.A.P. and K.L.G. conducted SNP genotyping. M.M.N., V.A.S., S.S.A., S.K.S., D.J.H., D.-L.D.-S., M.H. and A.L.B. recruited and clinically characterized patients. S.W.C., X.-Y.L. and T.S. were involved in cytogenetic and clinical array CGH studies. J.R.L. and O.R. were involved in research design and data analyses. W.B., T.S., O.A.S., O.R. and J.R.L. prepared the manuscript.

Corresponding authors

Correspondence to James R Lupski or Orly Reiner.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Methods, Supplementary Table 1 and Supplementary Figures 1–5 (PDF 760 kb)

Supplementary Movie 1

Organotypic slice cultures prepared from brains of E13.5 control mice carrying a silent transgene (Cre negative). (MOV 1461 kb)

Supplementary Movie 2

Organotypic slice cultures prepared from brains of E13.5 LIS1 overexpressing embryos (LIS1::Foxg1(cre)). (MOV 1627 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bi, W., Sapir, T., Shchelochkov, O. et al. Increased LIS1 expression affects human and mouse brain development. Nat Genet 41, 168–177 (2009). https://doi.org/10.1038/ng.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.302

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing