Abstract

Genome-wide association scans with high-throughput metabolic profiling provide unprecedented insights into how genetic variation influences metabolism and complex disease. Here we report the most comprehensive exploration of genetic loci influencing human metabolism thus far, comprising 7,824 adult individuals from 2 European population studies. We report genome-wide significant associations at 145 metabolic loci and their biochemical connectivity with more than 400 metabolites in human blood. We extensively characterize the resulting in vivo blueprint of metabolism in human blood by integrating it with information on gene expression, heritability and overlap with known loci for complex disorders, inborn errors of metabolism and pharmacological targets. We further developed a database and web-based resources for data mining and results visualization. Our findings provide new insights into the role of inherited variation in blood metabolic diversity and identify potential new opportunities for drug development and for understanding disease.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Inborn Factors in Disease (Oxford University Press, Oxford, 1931).

  2. 2.

    et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).

  3. 3.

    et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112, 3868–3875 (2005).

  4. 4.

    et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008).

  5. 5.

    et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

  6. 6.

    et al. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J. Clin. Epidemiol. 63, 970–979 (2010).

  7. 7.

    , , & Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin. Cancer Res. 17, 3019–3028 (2011).

  8. 8.

    et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

  9. 9.

    & Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet. 13, 759–769 (2012).

  10. 10.

    et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4, e1000282 (2008).

  11. 11.

    et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011).

  12. 12.

    et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol. Syst. Biol. 7, 525 (2011).

  13. 13.

    et al. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30, 317–320 (2012).

  14. 14.

    et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet. 8, e1003005 (2012).

  15. 15.

    , , , & Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

  16. 16.

    , , , & KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

  17. 17.

    et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  18. 18.

    , , & Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

  19. 19.

    et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 18, 130–143 (2013).

  20. 20.

    et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–141 (2010).

  21. 21.

    et al. A genome-wide association study of metabolic traits in human urine. Nat. Genet. 43, 565–569 (2011).

  22. 22.

    et al. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genet. 7, e1002270 (2011).

  23. 23.

    & Evidence of phenylalanine transaminase activity in the isoenzymes of aspartate transaminase. J. Biol. Chem. 247, 2486–2492 (1972).

  24. 24.

    et al. Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol. Mol. Biol. Cell 19, 1174–1184 (2008).

  25. 25.

    et al. Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol. Cell. Biochem. 295, 85–92 (2007).

  26. 26.

    , , , & Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst. Biol. 5, 21 (2011).

  27. 27.

    et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

  28. 28.

    et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

  29. 29.

    et al. The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. Genomics 79, 95–103 (2002).

  30. 30.

    et al. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 5, e257 (2007).

  31. 31.

    & Inborn variation in metabolism. Nat. Genet. 42, 97–98 (2010).

  32. 32.

    et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

  33. 33.

    et al. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes 62, 2141–2150 (2013).

  34. 34.

    , , & Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 84, 246–263 (2008).

  35. 35.

    , , & The UK adult twin registry (TwinsUK Resource). Twin Res. Hum. Genet. 16, 144–149 (2013).

  36. 36.

    , & KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 (suppl. 1), S26–S30 (2005).

  37. 37.

    , , & Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

  38. 38.

    , , , & Novel method to estimate the phenotypic variation explained by genome-wide association studies reveals large fraction of the missing heritability. Genet. Epidemiol. 35, 341–349 (2011).

  39. 39.

    , & METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

  40. 40.

    et al. OpenMx: an open source extended structural equation modeling framework. Psychometrika 76, 306–317 (2011).

  41. 41.

    1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  42. 42.

    , , & The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. USA 109, 1193–1198 (2012).

  43. 43.

    , , & Compartmentalization of the Edinburgh human metabolic network. BMC Bioinformatics 11, 393 (2010).

  44. 44.

    et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 41, D764–D772 (2013).

  45. 45.

    & 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

Download references

Acknowledgements

For TwinsUK, we thank the Genotyping Facilities at the Wellcome Trust Sanger Institute and the Center for Inherited Disease Research (CIDR)/US National Institutes of Health (NIH) for SNP genotyping. The KORA Study Group consists of A. Peters (speaker), J. Heinrich, R. Holle, R. Leidl, C. Meisinger, K. Strauch and their coworkers, who are responsible for the design and implementation of the KORA studies. For KORA, we thank P. Lichtner, G. Eckstein, G. Fischer, T. Strom, the Helmholtz Zentrum München genotyping staff and the field staff of the MONICA/KORA Augsburg studies. We also thank G. Fischer (KORA) and G. Surdulescu (TwinsUK) for sample handling and H. Chavez (KORA) and D. Hodgkiss (TwinsUK) for sample shipment. We are grateful to the MuTHER investigators for the transcriptomic data. Finally, we wish to express our appreciation to all study participants of the TwinsUK and KORA studies for donating their blood and time.

Part of this work was funded by Pfizer Worldwide Research and Development. For TwinsUK, the study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' National Health Service (NHS) Foundation Trust and King's College London. T.D.S. is the holder of a European Research Council (ERC) Advanced Principal Investigator award. SNP genotyping was performed by the Wellcome Trust Sanger Institute and the National Eye Institute via NIH/CIDR. The KORA (Kooperative Gesundheitsforschung in der Region Augsburg) research platform and the MONICA Augsburg studies were initiated and financed by the Helmholtz Zentrum München National Research Center for Environmental Health, which is funded by the German Federal Ministry of Education, Science, Research and Technology and by the state of Bavaria. This study was supported by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD). The German National Genome Research Network financed part of this work (NGFNPlus 01GS0823). Computing resources have been made available by the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (HLRB project h1231) and by the DEISA Extreme Computing Initiative (project PHAGEDA). Part of this research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. S.-Y.S. is supported by a Post-Doctoral Research Fellowship from the Oak Foundation. F.J.T. is supported by an ERC starting grant (LatentCauses). J.K. is supported by the German Research Foundation (SPP 1395, InKoMBio) and by a grant from the German Helmholtz Postdoctoral Programme. K.S. is supported by Biomedical Research Program funds at Weill Cornell Medical College in Qatar, a program funded by the Qatar Foundation. C.G. is supported by the European Union's Seventh Framework project MIMOmics (FP7-Health-F5-2012-305280) and by the Russian Foundation for Basic Research (RFBR)-Helmholtz research group program. N.S. is supported by the Wellcome Trust (grants WT098051 and WT091310) and by the European Commission (EUFP7 EPIGENESYS grant 257082 and BLUEPRINT grant HEALTH-F5-2011-282510). J.B.R. and V.F. are supported by the Canadian Institutes of Health Research, Fonds du Recherche du Science Québec and the Québec Consortium for Drug Discovery.

The Pfizer colleagues dedicate this manuscript to the memory of our friend Phoebe Roberts, whose passion for text mining, molecular biology and drug discovery contributed to the identification of causal genes in this research and to our work in general.

Author information

Author notes

    • So-Youn Shin
    •  & Jeff Trimmer

    Present addresses: Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (S.-Y.S.), and Edison Pharmaceuticals, Mountain View, California, USA (J.T.).

    • Phoebe Roberts

    Deceased.

    • So-Youn Shin
    • , Eric B Fauman
    • , Ann-Kristin Petersen
    •  & Jan Krumsiek

    These authors contributed equally to this work.

    • Karsten Suhre
    • , M Julia Brosnan
    • , Christian Gieger
    • , Gabi Kastenmüller
    • , Tim D Spector
    •  & Nicole Soranzo

    These authors jointly directed this work.

Affiliations

  1. Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK.

    • So-Youn Shin
    • , Jie Huang
    • , Tsun-Po Yang
    • , Klaudia Walter
    • , Lu Chen
    • , Louella Vasquez
    •  & Nicole Soranzo
  2. Computational Sciences Center of Emphasis, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA.

    • Eric B Fauman
    • , Vicky Wang
    • , Daniel Ziemek
    • , Phoebe Roberts
    •  & Li Xi
  3. Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.

    • Ann-Kristin Petersen
    •  & Christian Gieger
  4. Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.

    • Jan Krumsiek
    •  & Fabian J Theis
  5. European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.

    • Rita Santos
    •  & John P Overington
  6. Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany.

    • Matthias Arnold
    • , Karsten Suhre
    •  & Gabi Kastenmüller
  7. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.

    • Idil Erte
    • , Cristina Menni
    • , Ana M Valdes
    • , J Brent Richards
    •  & Tim D Spector
  8. Department of Human Genetics, McGill University, Montreal, Quebec, Canada.

    • Vincenzo Forgetta
    • , Elin Grundberg
    •  & J Brent Richards
  9. Department of Hematology, University of Cambridge, Cambridge, UK.

    • Lu Chen
    •  & Nicole Soranzo
  10. School of Medicine, University of Nottingham, Nottingham, UK.

    • Ana M Valdes
  11. Clinical Research Statistics, Pfizer Worldwide Research and Development, Groton, Connecticut, USA.

    • Craig L Hyde
    •  & M Julia Brosnan
  12. McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada.

    • Elin Grundberg
  13. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.

    • Melanie Waldenberger
  14. Department of Medicine, Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, Quebec, Canada.

    • J Brent Richards
  15. Metabolon, Inc., Durham, North Carolina, USA.

    • Robert P Mohney
    •  & Michael V Milburn
  16. Biotherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA.

    • Sally L John
  17. Cardiovascular and Metabolic Diseases, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA.

    • Jeff Trimmer
  18. Department of Mathematics, Technische Universität München, Garching, Germany.

    • Fabian J Theis
  19. Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar.

    • Karsten Suhre

Consortia

  1. The Multiple Tissue Human Expression Resource (MuTHER) Consortium

    A full list of members and affiliations appears in the Supplementary Note.

Authors

  1. Search for So-Youn Shin in:

  2. Search for Eric B Fauman in:

  3. Search for Ann-Kristin Petersen in:

  4. Search for Jan Krumsiek in:

  5. Search for Rita Santos in:

  6. Search for Jie Huang in:

  7. Search for Matthias Arnold in:

  8. Search for Idil Erte in:

  9. Search for Vincenzo Forgetta in:

  10. Search for Tsun-Po Yang in:

  11. Search for Klaudia Walter in:

  12. Search for Cristina Menni in:

  13. Search for Lu Chen in:

  14. Search for Louella Vasquez in:

  15. Search for Ana M Valdes in:

  16. Search for Craig L Hyde in:

  17. Search for Vicky Wang in:

  18. Search for Daniel Ziemek in:

  19. Search for Phoebe Roberts in:

  20. Search for Li Xi in:

  21. Search for Elin Grundberg in:

  22. Search for Melanie Waldenberger in:

  23. Search for J Brent Richards in:

  24. Search for Robert P Mohney in:

  25. Search for Michael V Milburn in:

  26. Search for Sally L John in:

  27. Search for Jeff Trimmer in:

  28. Search for Fabian J Theis in:

  29. Search for John P Overington in:

  30. Search for Karsten Suhre in:

  31. Search for M Julia Brosnan in:

  32. Search for Christian Gieger in:

  33. Search for Gabi Kastenmüller in:

  34. Search for Tim D Spector in:

  35. Search for Nicole Soranzo in:

Contributions

Study organization: M.J.B., K.S., C.G., G.K. and N.S. Manuscript preparation: S.-Y.S., J.K., K.S., G.K. and N.S. Data collection: R.P.M. and M.V.M. Analysis of associations: S.-Y.S., A.-K.P., J.H., G.K. and N.S. Locus bioinformatics annotation: E.B.F., D.Z., R.S., V.F., L.C., L.J.V., K.W., V.W., P.R., L.X., J.B.R., J.P.O. and G.K. GGM network: J.K., F.J.T. and G.K. Supplementary websites and online resources: M.A., G.K. and N.S. Provision of materials, data and analysis tools: T.D.S., K.S., G.K., E.B.F., M.W., C.G., J.T., I.E., A.M.V., C.L.H., T.-P.Y., C.M., S.L.J. and E.G.

Competing interests

M.V.M. and R.P.M. are employees of Metabolon, Inc. E.B.F., C.L.H., V.W., D.Z., P.R., L.X., S.L.J., J.T. and M.J.B. are full-time employees and shareholders of Pfizer.

Corresponding authors

Correspondence to Gabi Kastenmüller or Tim D Spector or Nicole Soranzo.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Note and Supplementary Figures 1–5

Excel files

  1. 1.

    Supplementary Tables 1–14

    Supplementary Tables 1–14

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.2982

Further reading

  • Insights into the genetics of blood pressure in black South African individuals: the Birth to Twenty cohort

    • Liesl M. Hendry
    • , Venesa Sahibdeen
    • , Ananyo Choudhury
    • , Shane A. Norris
    • , Michèle Ramsay
    •  & Zané Lombard

    BMC Medical Genomics (2018)

  • The fecal metabolome as a functional readout of the gut microbiome

    • Jonas Zierer
    • , Matthew A. Jackson
    • , Gabi Kastenmüller
    • , Massimo Mangino
    • , Tao Long
    • , Amalio Telenti
    • , Robert P. Mohney
    • , Kerrin S. Small
    • , Jordana T. Bell
    • , Claire J. Steves
    • , Ana M. Valdes
    • , Tim D. Spector
    •  & Cristina Menni

    Nature Genetics (2018)

  • Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells

    • Juliane Hitzel
    • , Eunjee Lee
    • , Yi Zhang
    • , Sofia Iris Bibli
    • , Xiaogang Li
    • , Sven Zukunft
    • , Beatrice Pflüger
    • , Jiong Hu
    • , Christoph Schürmann
    • , Andrea Estefania Vasconez
    • , James A. Oo
    • , Adelheid Kratzer
    • , Sandeep Kumar
    • , Flávia Rezende
    • , Ivana Josipovic
    • , Dominique Thomas
    • , Hector Giral
    • , Yannick Schreiber
    • , Gerd Geisslinger
    • , Christian Fork
    • , Xia Yang
    • , Fragiska Sigala
    • , Casey E. Romanoski
    • , Jens Kroll
    • , Hanjoong Jo
    • , Ulf Landmesser
    • , Aldons J. Lusis
    • , Dmitry Namgaladze
    • , Ingrid Fleming
    • , Matthias S. Leisegang
    • , Jun Zhu
    •  & Ralf P. Brandes

    Nature Communications (2018)

  • A decade in psychiatric GWAS research

    • Tanya Horwitz
    • , Katie Lam
    • , Yu Chen
    • , Yan Xia
    •  & Chunyu Liu

    Molecular Psychiatry (2018)

  • A variant at 9q34.11 is associated with HLA-DQB1*06:02 negative essential hypersomnia

    • Taku Miyagawa
    • , Seik-Soon Khor
    • , Hiromi Toyoda
    • , Takashi Kanbayashi
    • , Aya Imanishi
    • , Yohei Sagawa
    • , Nozomu Kotorii
    • , Tatayu Kotorii
    • , Yu Ariyoshi
    • , Yuji Hashizume
    • , Kimihiro Ogi
    • , Hiroshi Hiejima
    • , Yuichi Kamei
    • , Akiko Hida
    • , Masayuki Miyamoto
    • , Azusa Ikegami
    • , Yamato Wada
    • , Masanori Takami
    • , Yuichi Higashiyama
    • , Ryoko Miyake
    • , Hideaki Kondo
    • , Yota Fujimura
    • , Yoshiyuki Tamura
    • , Yukari Taniyama
    • , Naoto Omata
    • , Yuji Tanaka
    • , Shunpei Moriya
    • , Hirokazu Furuya
    • , Mitsuhiro Kato
    • , Yoshiya Kawamura
    • , Takeshi Otowa
    • , Akinori Miyashita
    • , Hiroto Kojima
    • , Hiroh Saji
    • , Mihoko Shimada
    • , Maria Yamasaki
    • , Takumi Kobayashi
    • , Rumi Misawa
    • , Yosuke Shigematsu
    • , Ryozo Kuwano
    • , Tsukasa Sasaki
    • , Jun Ishigooka
    • , Yuji Wada
    • , Kazuhito Tsuruta
    • , Shigeru Chiba
    • , Fumiaki Tanaka
    • , Naoto Yamada
    • , Masako Okawa
    • , Kenji Kuroda
    • , Kazuhiko Kume
    • , Koichi Hirata
    • , Naohisa Uchimura
    • , Tetsuo Shimizu
    • , Yuichi Inoue
    • , Yutaka Honda
    • , Kazuo Mishima
    • , Makoto Honda
    •  & Katsushi Tokunaga

    Journal of Human Genetics (2018)