Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins

Abstract

Coordinate control of different classes of cyclins is fundamentally important for cell cycle regulation and tumor suppression, yet the underlying mechanisms are incompletely understood. Here we show that the PARK2 tumor suppressor mediates this coordination. The PARK2 E3 ubiquitin ligase coordinately controls the stability of both cyclin D and cyclin E. Analysis of approximately 5,000 tumor genomes shows that PARK2 is a very frequently deleted gene in human cancer and uncovers a striking pattern of mutual exclusivity between PARK2 deletion and amplification of CCND1, CCNE1 or CDK4—implicating these genes in a common pathway. Inactivation of PARK2 results in the accumulation of cyclin D and acceleration of cell cycle progression. Furthermore, PARK2 is a component of a new class of cullin-RING–containing ubiquitin ligases targeting both cyclin D and cyclin E for degradation. Thus, PARK2 regulates cyclin-CDK complexes, as does the CDK inhibitor p16, but acts as a master regulator of the stability of G1/S cyclins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic evidence from approximately 5,000 primary tumors suggests that PARK2 is a tumor suppressor integrally involved in cell cycle regulation.
Figure 2: PARK2 regulates cell cycle progression and proliferation.
Figure 3: Coordinate control of cyclin D and cyclin E by the PARK2 ubiquitin ligase.
Figure 4: Molecular mechanisms of PARK2 regulation of cyclin D1 protein.
Figure 5: PARK2 is a component of new ubiquitin ligase complexes controlling cyclin D degradation.
Figure 6: PARK2 is a master regulator of G1/S cyclin stability.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Ang, X.L. & Wade Harper, J. SCF-mediated protein degradation and cell cycle control. Oncogene 24, 2860–2870 (2005).

    CAS  PubMed  Google Scholar 

  2. Teixeira, L.K. & Reed, S.I. Ubiquitin ligases and cell cycle control. Annu. Rev. Biochem. 82, 387–414 (2013).

    CAS  PubMed  Google Scholar 

  3. Vodermaier, H.C. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 14, R787–R796 (2004).

    CAS  PubMed  Google Scholar 

  4. Nurse, P. Checkpoint pathways come of age. Cell 91, 865–867 (1997).

    CAS  PubMed  Google Scholar 

  5. Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756 (1994).

    CAS  PubMed  Google Scholar 

  6. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    CAS  PubMed  Google Scholar 

  7. Deshaies, R.J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    CAS  PubMed  Google Scholar 

  8. Stegmeier, F. et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876–881 (2007).

    CAS  PubMed  Google Scholar 

  9. Skaar, J.R., Pagan, J.K. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14, 369–381 (2013).

    CAS  PubMed  Google Scholar 

  10. Ackman, J.B., Ramos, R.L., Sarkisian, M.R. & Loturco, J.J. Citron kinase is required for postnatal neurogenesis in the hippocampus. Dev. Neurosci. 29, 113–123 (2007).

    CAS  PubMed  Google Scholar 

  11. Winston, J.T., Koepp, D.M., Zhu, C., Elledge, S.J. & Harper, J.W. A family of mammalian F-box proteins. Curr. Biol. 9, 1180–1182 (1999).

    CAS  PubMed  Google Scholar 

  12. Diehl, J.A., Zindy, F. & Sherr, C.J. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11, 957–972 (1997).

    CAS  PubMed  Google Scholar 

  13. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Veeriah, S., Morris, L., Solit, D. & Chan, T.A. The familial Parkinson disease gene PARK2 is a multisite tumor suppressor on chromosome 6q25.2-27 that regulates cyclin E. Cell Cycle 9, 1451–1452 (2010).

    CAS  PubMed  Google Scholar 

  15. Lücking, C.B. et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med. 342, 1560–1567 (2000).

    PubMed  Google Scholar 

  16. Veeriah, S. et al. Somatic mutations of the Parkinson's disease–associated gene PARK2 in glioblastoma and other human malignancies. Nat. Genet. 42, 77–82 (2010).

    CAS  PubMed  Google Scholar 

  17. Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vaske, C.J. et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237–i245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  20. Mermel, C.H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Zack, T.I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bignell, G.R. et al. Signatures of mutation and selection in the cancer genome. Nature 463, 893–898 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hinds, P.W., Dowdy, S.F., Eaton, E.N., Arnold, A. & Weinberg, R.A. Function of a human cyclin gene as an oncogene. Proc. Natl. Acad. Sci. USA 91, 709–713 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hosokawa, Y. & Arnold, A. Cyclin D1/PRAD1 as a central target in oncogenesis. J. Lab. Clin. Med. 127, 246–252 (1996).

    CAS  PubMed  Google Scholar 

  25. An, H.X., Beckmann, M.W., Reifenberger, G., Bender, H.G. & Niederacher, D. Gene amplification and overexpression of CDK4 in sporadic breast carcinomas is associated with high tumor cell proliferation. Am. J. Pathol. 154, 113–118 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  27. Vogelstein, B. & Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    CAS  PubMed  Google Scholar 

  28. Poulogiannis, G. et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl. Acad. Sci. USA 107, 15145–15150 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305 (2000).

    CAS  PubMed  Google Scholar 

  30. Tanaka, K. et al. Parkin is linked to the ubiquitin pathway. J. Mol. Med. 79, 482–494 (2001).

    CAS  PubMed  Google Scholar 

  31. Sarraf, S.A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  Google Scholar 

  33. Lee, D.H. & Goldberg, A.L. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem. 271, 27280–27284 (1996).

    CAS  PubMed  Google Scholar 

  34. Alt, J.R., Cleveland, J.L., Hannink, M. & Diehl, J.A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1–dependent cellular transformation. Genes Dev. 14, 3102–3114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin, D.I. et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCFFBX4-αB crystallin complex. Mol. Cell 24, 355–366 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakayama, K.I. & Nakayama, K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16, 323–333 (2005).

    CAS  PubMed  Google Scholar 

  37. Vaites, L.P. et al. The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol. Cell. Biol. 31, 4513–4523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanie, T. et al. Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation. Mol. Cell. Biol. 32, 590–605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbash, O. et al. Mutations in Fbx4 inhibit dimerization of the SCFFbx4 ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 14, 68–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Staropoli, J.F. et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749 (2003).

    CAS  PubMed  Google Scholar 

  41. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    CAS  PubMed  Google Scholar 

  42. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    CAS  PubMed  Google Scholar 

  43. Minella, A.C. & Clurman, B.E. Mechanisms of tumor suppression by the SCFFbw7. Cell Cycle 4, 1356–1359 (2005).

    CAS  PubMed  Google Scholar 

  44. Ko, H.S. et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc. Natl. Acad. Sci. USA 107, 16691–16696 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32, 2099–2112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kao, S.Y. DNA damage induces nuclear translocation of parkin. J. Biomed. Sci. 16, 67 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Zhang, C. et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl. Acad. Sci. USA 108, 16259–16264 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Trempe, J.F. & Fon, E.A. Structure and function of Parkin, PINK1, and DJ-1, the three musketeers of neuroprotection. Front. Neurol. 4, 38 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Trempe, J.F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455 (2013).

    CAS  PubMed  Google Scholar 

  51. Johnson, B.N., Berger, A.K., Cortese, G.P. & Lavoie, M.J. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc. Natl. Acad. Sci. USA 109, 6283–6288 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, H. et al. Parkin regulates paclitaxel sensitivity in breast cancer via a microtubule-dependent mechanism. J. Pathol. 218, 76–85 (2009).

    CAS  PubMed  Google Scholar 

  53. Wang, Y., Nartiss, Y., Steipe, B., McQuibban, G.A. & Kim, P.K. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy 8, 1462–1476 (2012).

    CAS  PubMed  Google Scholar 

  54. Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).

    CAS  PubMed  Google Scholar 

  55. Gitig, D.M. & Koff, A. Cdk pathway: cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Mol. Biotechnol. 19, 179–188 (2001).

    CAS  PubMed  Google Scholar 

  56. Magal, S.S. et al. Downregulation of Bax mRNA expression and protein stability by the E6 protein of human papillomavirus 16. J. Gen. Virol. 86, 611–621 (2005).

    CAS  PubMed  Google Scholar 

  57. van Hal, N.L. et al. The application of DNA microarrays in gene expression analysis. J. Biotechnol. 78, 271–280 (2000).

    CAS  PubMed  Google Scholar 

  58. Minn, A.J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Holland, A.C. Koff and J. Huse for helpful advice. S.T. was a recipient of a US National Institutes of Health T32 grant (5T32CA160001).This work was supported by the US National Institutes of Health (RO1 NS086875-01) (T.A.C.), the Memorial Sloan-Kettering Cancer Center Brain Tumor Center (T.A.C.), the Sontag Foundation (T.A.C.) and the Frederick Adler Fund (T.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

T.A.C., Y.G., T.I.Z. and R.B. designed the experiments. Y.G., T.I.Z., K.L., I.-L.T., S.T., S.V., S.M., A.V., S.E.S. and P.P. performed the experiments. Y.G., T.A.C., R.B., T.I.Z. and L.G.T.M. analyzed the data. E.H. and R.R. contributed new reagents. T.A.C., Y.G., T.I.Z. and R.B. wrote the manuscript.

Corresponding author

Correspondence to Timothy A Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Examples of PARK2 locus profiles from distinct cancer lineages.

Copy number data from TCGA. Representative types of malignancy are shown. SCNA profiles of chromosome 6 (left) and a 5-Mb region surrounding PARK2 (right) are shown in the three lineages that had the highest frequency of PARK2 deletions: ovarian cancer (a), breast cancer (b) and bladder cancer (c).

Supplementary Figure 2 PARK2 regulates cell cycle progression.

FACS data from three cell lines as indicated. Cells were transfected with scrambled siRNA control or with PARK2 siRNAs. DNA content and BrdU incorporation were measured after PARK2 knockdown. Representative results are shown from triplicate experiments.

Supplementary Figure 3 PARK2 knockdown results in alterations in gene expression.

The indicated cells were treated with scrambled siRNA or with PARK2 siRNA as shown. The heat map shows the top 50 genes with increased expression.

Supplementary Figure 4 Pathway analyses of 2,698 genes differentially expressed across 2 cell lines transfected with PARK2 siRNAs.

Significant enrichment is shown in transcriptional programs governing cell growth, proliferation, protein ubiquitination and cell cycle control.

Supplementary Figure 5 Gene expression does not change for cyclin D1 and cyclin E1 after PARK2 knockdown.

Two independent PARK2 siRNAs were used. Experiments were repeated five times. Error bars, 1 s.d. NS, not significant.

Supplementary Figure 6 PARK2 knockdown causes accumulation of cyclin D2 and cyclin D3.

T202 cells were transfected with scrambled siRNA control or with PARK2 siRNAs, and protein blots were performed with antibodies specific for each cyclin type as indicated. Representative results are shown from triplicate experiments.

Supplementary Figure 7 Immunoprecipitation assays show binding of wild-type PARK2 to endogenous cyclin D2 and cyclin D3.

HEK 293T cells were transfected with either vector only (pcDNA3.1) or with vector encoding wild-type PARK2. Assays were performed as described in the Online Methods.

Supplementary Figure 8 Patterns of genetic alteration of FBXW7 and PARK2 in colorectal cancer.

In colorectal cancer, FBXW7 is primarily mutated, whereas PARK2 is deleted and mutated. Shown are data from The Cancer Genome Atlas Project (http://www.cbioportal.org/public-portal/). Point mutations are noted in green, and deletions are noted in blue. Percentages denote total numbers of tumors with alterations in the gene. p, not significant.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1, 2 and 5 (PDF 1314 kb)

Supplementary Table 3

Gene expression changes after PARK2 knockdown. (XLS 654 kb)

Supplementary Table 4

Pathway analyses, based on genes differentially expressed after PARK2 knockdown. (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Zack, T., Morris, L. et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet 46, 588–594 (2014). https://doi.org/10.1038/ng.2981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing