Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pathogens and host immunity in the ancient human oral cavity

Abstract

Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human–associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taxonomic and phylogenetic characterization of ancient dental calculus.
Figure 2: Genomic coverage plot for the periodontal pathogen T. forsythia, with details of gene and protein coverage of the virulence factor TF2663, tfsB, from medieval human dental calculus (G12).
Figure 3: Metaproteomic comparison of human proteins in modern and ancient dental samples.
Figure 4: Genetic, microfossil, zooarchaeological and stable isotopic evidence for the medieval human diet at Dalheim, Germany.
Figure 5: Evidence of microscopic and biomolecular preservation of ancient dental calculus.

Similar content being viewed by others

Accession codes

Primary accessions

Proteomics Identifications Database

Sequence Read Archive

References

  1. Marsh, P.D. Are dental diseases examples of ecological catastrophes? Microbiology 149, 279–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Pihlstrom, B.L., Michalowicz, B.S. & Johnson, N.W. Periodontal diseases. Lancet 366, 1809–1820 (2005).

    Article  PubMed  Google Scholar 

  3. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  4. Dewhirst, F.E. et al. The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hujoel, P. Dietary carbohydrates and dental-systemic diseases. J. Dent. Res. 88, 490–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kuo, L.C., Polson, A.M. & Kang, T. Associations between periodontal diseases and systemic diseases: a review of the inter-relationships and interactions with diabetes, respiratory diseases, cardiovascular diseases and osteoporosis. Public Health 122, 417–433 (2008).

    Article  PubMed  Google Scholar 

  7. Leishman, S.J., Do, H.L. & Ford, P.J. Cardiovascular disease and the role of oral bacteria. J. Oral Microbiol. 2, 5781–5793 (2010).

    Article  Google Scholar 

  8. Jin, Y. & Yip, H.K. Supragingival calculus: formation and control. Crit. Rev. Oral Biol. Med. 13, 426–441 (2002).

    Article  PubMed  Google Scholar 

  9. Hardy, K. et al. Starch granules, dental calculus and new perspectives on ancient diet. J. Archaeol. Sci. 36, 248–255 (2009).

    Article  Google Scholar 

  10. Henry, A.G., Brooks, A.S. & Piperno, D.R. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc. Natl. Acad. Sci. USA 108, 486–491 (2011).

    Article  PubMed  Google Scholar 

  11. Adler, C.J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 45, 450–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De La Fuente, C.P., Flores, S.V. & Moraga, M.L. DNA from human ancient bacteria: a novel source of genetic evidence from archaeological dental calculus. Archaeometry 55, 767–778 (2013).

    Article  CAS  Google Scholar 

  13. Linossier, A., Gajardo, M. & Olavarria, J. Paleomicrobiological study in dental calculus: Streptococcus mutans. Scanning Microsc. 10, 1005–1013; discussion 1014 (1996).

    CAS  PubMed  Google Scholar 

  14. Wang, J. et al. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep. 3, 1843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fierer, N., Bradford, M.A. & Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    Article  PubMed  Google Scholar 

  16. Munro, C.L. & Grap, M.J. Oral health and care in the intensive care unit: state of the science. Am. J. Crit. Care 13, 25–34 (2004).

    PubMed  Google Scholar 

  17. Shay, K. Infectious complications of dental and periodontal diseases in the elderly population. Clin. Infect. Dis. 34, 1215–1223 (2002).

    Article  PubMed  Google Scholar 

  18. Nakano, K. et al. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol. Immunol. 24, 64–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Gillespie, J.J. et al. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect. Immun. 79, 4286–4298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Willner, D. et al. Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4547–4553 (2011).

    Article  PubMed  Google Scholar 

  21. Socransky, S.S. & Haffajee, A.D. Periodontal microbial ecology. Periodontol. 2000 38, 135–187 (2005).

    Article  PubMed  Google Scholar 

  22. Marri, P.R. et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS ONE 5, e11835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deguchi, T., Yasuda, M. & Ito, S. Management of pharyngeal gonorrhea is crucial to prevent the emergence and spread of antibiotic-resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 56, 4039–4040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Emonts, M., Hazelzet, J.A., de Groot, R. & Hermans, P.W. Host genetic determinants of Neisseria meningitidis infections. Lancet Infect. Dis. 3, 565–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Goker, M. et al. Complete genome sequence of Olsenella uli type strain (VPI D76D-27CT). Stand. Genomic Sci. 3, 76–84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Palmer, R.J. Composition and development of oral bacterial communities. Periodontol. 2000 64, 20–39 (2014).

    Article  PubMed  Google Scholar 

  27. O'Brien-Simpson, N.M., Veith, P.D., Dashper, S.G. & Reynolds, E.C. Antigens of bacteria associated with periodontitis. Periodontol. 2000 35, 101–134 (2004).

    Article  PubMed  Google Scholar 

  28. Amano, A., Nakagawa, I., Okahashi, N. & Hamada, N. Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J. Periodontal Res. 39, 136–142 (2004).

    Article  PubMed  Google Scholar 

  29. Sommer, M.O., Dantas, G. & Church, G.M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie, G. et al. Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. Mol. Oral Microbiol. 25, 391–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D'Costa, V.M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Tanner, A.C. & Izard, J. Tannerella forsythia, a periodontal pathogen entering the genomic era. Periodontol. 2000 42, 88–113 (2006).

    Article  PubMed  Google Scholar 

  33. Sharma, A. Virulence mechanisms of Tannerella forsythia. Periodontol. 2000 54, 106–116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shimotahira, N. et al. The S-layer of Tannerella forsythia contributes to serum resistance and oral bacterial co-aggregation. Infect. Immun. 81, 1198–1206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, S.W. et al. Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerella forsythia. Gene 371, 102–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Gorr, S.U. Antimicrobial peptides of the oral cavity. Periodontol. 2000 51, 152–180 (2009).

    Article  PubMed  Google Scholar 

  37. Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Coxon, A., Tang, T. & Mayadas, T.N. Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 190, 923–934 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ryder, M.I. Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontol. 2000 53, 124–137 (2010).

    Article  PubMed  Google Scholar 

  40. Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 198, 773–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Furugen, R., Hayashida, H. & Saito, T. Porphyromonas gingivalis and Escherichia coli lipopolysaccharide causes resistin release from neutrophils. Oral Dis. 19, 479–483 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Kusminski, C.M., McTernan, P.G. & Kumar, S. Role of resistin in obesity, insulin resistance and Type II diabetes. Clin. Sci. (Lond.) 109, 243–256 (2005).

    Article  CAS  Google Scholar 

  43. Gracia-Arnaiz, M. Fat bodies and thin bodies. Cultural, biomedical and market discourses on obesity. Appetite 55, 219–225 (2010).

    Article  PubMed  Google Scholar 

  44. Frei, R., Lauener, R.P., Crameri, R. & O'Mahony, L. Microbiota and dietary interactions: an update to the hygiene hypothesis? Allergy 67, 451–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Palmer, S.A., Smith, O. & Allaby, R.G. The blossoming of plant archaeogenetics. Ann. Anat. 194, 146–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Leonard, J.A. et al. Animal DNA in PCR reagents plagues ancient DNA research. J. Archaeol. Sci. 34, 1361–1366 (2007).

    Article  Google Scholar 

  47. Bocherens, H., Grupe, G., Mariotti, A. & Turban-Just, S. Molecular preservation and isotopy of Mesolithic human finds from the Ofnet cave (Bavaria, Germany). Anthropol. Anz. 55, 121–129 (1997).

    CAS  PubMed  Google Scholar 

  48. Oelze, V.M. et al. Multi-isotopic analysis reveals individual mobility and diet at the early iron age monumental tumulus of Magdalenenberg, Germany. Am. J. Phys. Anthropol. 148, 406–421 (2012).

    Article  PubMed  Google Scholar 

  49. Oelze, V.M. et al. Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J. Archaeol. Sci. 38, 270–279 (2011).

    Article  Google Scholar 

  50. Schutkowski, H., Herrmann, B., Wiedemann, F., Bocherens, H. & Grupe, G. Diet, status and decomposition at Weingarten: trace element and isotope analyses on early mediaeval skeletal material. J. Archaeol. Sci. 26, 675–685 (1999).

    Article  Google Scholar 

  51. Turner-Walker, G. in Advances in Human Paleopathology (ed. Pinhasi, R. & Mays, S.) Ch. 1, 29 (John Wiley & Sons, New York, 2008).

  52. Zijnge, V. et al. Oral biofilm architecture on natural teeth. PloS One 5, e9321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wood, J.W., Milner, G.R., Harpending, H.C. & Weiss, K.M. The osteological paradox—problems of inferring prehistoric health from skeletal samples. Curr. Anthropol. 33, 343–370 (1992).

    Article  Google Scholar 

  55. Meyer, F. et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vizcaíno, J.A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Richards, M.P. & Hedges, R.E.M. Stable isotope evidence for similarities in the types of marine foods used by late mesolithic humans at sites along the Atlantic coast of Europe. J. Archaeol. Sci. 26, 717–722 (1999).

    Article  Google Scholar 

  58. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nawrocki, E.P., Kolbe, D.L. & Eddy, S.R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Cole, J.R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Price, M.N., Dehal, P.S. & Arkin, A.P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinformatics Chapter 10, Unit 10.17 (2011).

  64. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, B. & Pop, M. ARDB antibiotic resistance genes database. Nucleic Acids Res. 37, D443–D447 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Alikhan, N.F., Petty, N.K., Ben Zakour, N.L. & Beatson, S.A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12, 402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cappellini, E. et al. Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170, 222–232 (2014).

    Google Scholar 

  68. Savitski, M.M., Mathieson, T., Becher, I. & Bantscheff, M. H-score, a mass accuracy driven rescoring approach for improved peptide identification in modification rich samples. J. Proteome Res. 9, 5511–5516 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, T. et al. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford) 2010, baq013 (2010).

    Article  CAS  Google Scholar 

  70. Stelzer, G. et al. In-silico human genomics with GeneCards. Hum. Genomics 5, 709–717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huson, D.H., Auch, A.F., Qi, J. & Schuster, S.C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mitra, S. et al. Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinformatics 12 (suppl. 1), S21 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Kantonale Ethik-Kommission Zürich, the Functional Genomics Center Zürich, the Center for Microscopy and Image Analysis, and the Institute of Oral Biology at the University of Zürich; the PRIDE Team; G. Akgül, K. Alt, D. Ashford, P. Ashton, H. Barton, A. Bouwman, C. Burger, D. Coulthard, J. Hublin, V. Meskenaite, F. Najar, M. Richards, K. Sankaranarayanan, R. Schlapbach, L. Shillito, T. Stöllner, O. Ullrich and H. Zbinden for assistance with data collection, analysis and management; and M. Carver, F. Dewhirst, A. Tanner, K. Hardy and A. Henry for helpful comments on early drafts and data analyses. This work was supported by the Mäxi Foundation Zürich, the Swiss Foundation for Nutritional Research, Danish Research Foundation grant 29396, Danish Council for Independent Research grant 10-081390, Lundbeck Foundation grants R52-A5062 and R44-A4384, US National Institutes of Health grants R01-HG005172, R01-GM089886, R01-DE018499 and R21-DE018310, European Research Council grant UMICIS/242870, Marie Curie grants EUROTAST FP7-PEOPLE-2010 MC ITN, PALIMPSEST FP7-PEOPLE-2011-IEF 299101 and ORCA FP7-PEOPLE-2011-IOF 299075, a C2D2 Research Priming Fund grant partly funded by Wellcome Trust 097829, Swiss National Science Foundation grant 31003A-135688, the Novartis Foundation, the Novo Nordisk Foundation, the Max Planck Society and the University of York.

Author information

Authors and Affiliations

Authors

Contributions

C.W. conceived the project, with input from M.J.C. R.S. and F.R. contributed samples. C.W., E.C., M.J.C., M.T.P.G., C.v.M., A.R. and Y.H. designed the experiments. C.W., E.C., N.S., C.T., A.R., Y.H., D.C.S.-G., S.C., S.F., H.U.L., P.N., C.D.K., J.V.O., K.Y.T. and E.E. performed the experiments. J.F.M.R., R.V., C.W., C.v.M., J.G., A.R., Y.H., R.Y.T., S.F., C.S., S.C., D.C.S.-G., J.H., J.A.S.C., L.H.H. and T.K. analyzed the data. S.B.-O., Y.H., E.W., C.M.L., M.T.P.G., M.J.C. and F.R. contributed material support to the project. Y.H. wrote the supplementary Raman section. C.W. wrote the manuscript, with critical input from C.M.L., M.T.P.G., M.J.C., C.v.M., E.W., E.C. and the remaining authors.

Corresponding authors

Correspondence to Christina Warinner or Enrico Cappellini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23, Supplementary Tables 1 and 5–29, and Supplementary Note (PDF 11364 kb)

Supplementary Table 2

Comparison of putative pathogens identified in ancient dental calculus and HMP healthy cohort dental plaque samples. (XLSX 124 kb)

Supplementary Table 3

Specific virulence factors and mobile elements identified within ancient dental calculus metagenomic and metaproteomic data. (XLSX 4997 kb)

Supplementary Table 4

Putative antibiotic resistance genes identified from ancient dental calculus metagenomic data. (XLS 185 kb)

Supplementary Data Set 1

Ancient dental samples BIOM file for 454 data. (TXT 449 kb)

Supplementary Data Set 2

Ancient dental and HMP samples BIOM file for 454 data. (TXT 7461 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warinner, C., Rodrigues, J., Vyas, R. et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet 46, 336–344 (2014). https://doi.org/10.1038/ng.2906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2906

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research