Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution and transmission of drug-resistant tuberculosis in a Russian population

Abstract

The molecular mechanisms determining the transmissibility and prevalence of drug-resistant tuberculosis in a population were investigated through whole-genome sequencing of 1,000 prospectively obtained patient isolates from Russia. Two-thirds belonged to the Beijing lineage, which was dominated by two homogeneous clades. Multidrug-resistant (MDR) genotypes were found in 48% of isolates overall and in 87% of the major clades. The most common rpoB mutation was associated with fitness-compensatory mutations in rpoA or rpoC, and a new intragenic compensatory substitution was identified. The proportion of MDR cases with extensively drug-resistant (XDR) tuberculosis was 16% overall, with 65% of MDR isolates harboring eis mutations, selected by kanamycin therapy, which may drive the expansion of strains with enhanced virulence. The combination of drug resistance and compensatory mutations displayed by the major clades confers clinical resistance without compromising fitness and transmissibility, showing that, in addition to weaknesses in the tuberculosis control program, biological factors drive the persistence and spread of MDR and XDR tuberculosis in Russia and beyond.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coverage of the population of patients with tuberculosis.
Figure 2: Maximum-likelihood phylogeny of 1,035 M. tuberculosis isolates based on 32,445 variable sites.
Figure 3: Phylogenetic distribution of resistance-conferring and compensatory genotypes.
Figure 4: Prevalence of drug resistance mutations and association with lineage.
Figure 5: Distribution of rifampicin resistance and compensatory amino acid substitutions in the RNA polymerase subunits RpoA, RpoB and RpoC.
Figure 6: Transmissibility of drug resistance genotypes.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. World Health Organization. Global Tuberculosis Report (World Health Organization, Geneva, 2012).

  2. Gandhi, N.R. et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375, 1830–1843 (2010).

    Article  PubMed  Google Scholar 

  3. Balabanova, Y. et al. Survival of civilian and prisoner drug-sensitive, multi- and extensive drug-resistant tuberculosis cohorts prospectively followed in Russia. PLoS ONE 6, e20531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balabanova, Y. et al. Survival of drug resistant tuberculosis patients in Lithuania: retrospective national cohort study. BMJ Open 1, e000351 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Health Protection Agency. Tuberculosis in the UK: 2012 Report (Health Protection Agency, London, 2012).

  6. Udwadia, Z.F. MDR, XDR, TDR tuberculosis: ominous progression. Thorax 67, 286–288 (2012).

    Article  PubMed  Google Scholar 

  7. Andersson, D.I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Böttger, E.C. & Springer, B. Tuberculosis: drug resistance, fitness, and strategies for global control. Eur. J. Pediatr. 167, 141–148 (2008).

    Article  PubMed  Google Scholar 

  9. de Vos, M. et al. Putative compensatory mutations in the rpoC gene of rifampicin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother. 57, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dye, C., Williams, B.G., Espinal, M.A. & Raviglione, M.C. Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295, 2042–2046 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Cohen, T., Sommers, B. & Murray, M. The effect of drug resistance on the fitness of Mycobacterium tuberculosis. Lancet Infect. Dis. 3, 13–21 (2003).

    Article  PubMed  Google Scholar 

  12. Borrell, S. & Gagneux, S. Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clin. Microbiol. Infect. 17, 815–820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parkhill, J. & Wren, B.W. Bacterial epidemiology and biology—lessons from genome sequencing. Genome Biol. 12, 230 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Farhat, M.R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 45, 1183–1189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, H. et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat. Genet. 45, 1255–1260 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Drobniewski, F. et al. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. J. Am. Med. Assoc. 293, 2726–2731 (2005).

    Article  CAS  Google Scholar 

  17. Brown, T., Nikolayevskyy, V., Velji, P. & Drobniewski, F. Associations between Mycobacterium tuberculosis strains and phenotypes. Emerg. Infect. Dis. 16, 272–280 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Casali, N. et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 22, 735–745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krüüner, A. et al. Spread of drug-resistant pulmonary tuberculosis in Estonia. J. Clin. Microbiol. 39, 3339–3345 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baker, L., Brown, T., Maiden, M.C. & Drobniewski, F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg. Infect. Dis. 10, 1568–1577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gagneux, S. et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 2869–2873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng, L., Connor, T.R., Sirén, J., Aanensen, D.M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Homolka, S. et al. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS ONE 7, e39855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walker, T.M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mokrousov, I. et al. Mycobacterium tuberculosis population in Northwestern Russia: an update from Russian-EU/Latvian border region. PLoS ONE 7, e41318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591–593 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Telenti, A. et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341, 647–650 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2012).

    Article  CAS  Google Scholar 

  30. Reynolds, M.G. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156, 1471–1481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hall, A.R., Griffiths, V.F., MacLean, R.C. & Colegrave, N. Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa. Proc. R. Soc. B Biol. Sci. 277, 643–650 (2010).

    Article  CAS  Google Scholar 

  32. Brandis, G., Wrande, M., Liljas, L. & Hughes, D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol. Microbiol. 85, 142–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Sherman, D.R. et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Pym, A.S., Saint-Joanis, B. & Cole, S.T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70, 4955–4960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaunbrecher, M.A., Sikes, R.D., Metchock, B., Shinnick, T.M. & Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 106, 20004–20009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maus, C.E., Plikaytis, B.B. & Shinnick, T.M. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49, 3192–3197 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maruri, F. et al. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J. Antimicrob. Chemother. 67, 819–831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ginsburg, A.S., Grosset, J.H. & Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis. 3, 432–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Shen, X. et al. Association between embB codon 306 mutations and drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 51, 2618–2620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramaswamy, S.V. et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44, 326–336 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scorpio, A. & Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 2, 662–667 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Wong, S.Y. et al. Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 55, 2515–2522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spies, F.S. et al. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J. Clin. Microbiol. 49, 2625–2630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morlock, G.P., Metchock, B., Sikes, D., Crawford, J.T. & Cooksey, R.C. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 47, 3799–3805 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balabanova, Y. et al. Multidrug-resistant tuberculosis in Russia: clinical characteristics, analysis of second-line drug resistance and development of standardized therapy. Eur. J. Clin. Microbiol. Infect. Dis. 24, 136–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, S. et al. Activation of the eis gene in a W-Beijing strain of Mycobacterium tuberculosis correlates with increased SigA levels and enhanced intracellular growth. Microbiology 155, 1272–1281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shin, D.-M. et al. Mycobacterium tuberculosis Eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 6, e1001230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Engohang-Ndong, J. et al. EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol. Microbiol. 51, 175–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Finken, M., Kirschner, P., Meier, A., Wrede, A. & Böttger, E.C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol. 9, 1239–1246 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood–based inference of large phylogenetic trees. Bioinformatics 21, 456–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9, 539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang, J., Hanage, W.P., Fraser, C. & Corander, J. Identifying currents in the gene pool for bacterial populations using an integrative approach. PLoS Comput. Biol. 5, e1000455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nei, M. Molecular Evolutionary Genetics (Columbia University Press, New York, 1987).

  60. Cai, J.J. PGEToolbox: a Matlab toolbox for population genetics and evolution. J. Hered. 99, 438–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Kamerbeek, J. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35, 907–914 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Canetti, G. et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull. World Health Organ. 29, 565–578 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Krüüner, A., Yates, M.D. & Drobniewski, F.A. Evaluation of MGIT 960–based antimicrobial testing and determination of critical concentrations of first- and second-line antimicrobial drugs with drug-resistant clinical strains of Mycobacterium tuberculosis. J. Clin. Microbiol. 44, 811–818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ling, D.I., Zwerling, A.A. & Pai, M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur. Respir. J. 32, 1165–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Public Health England National Mycobacterium Reference Laboratory and the Samara Regional Tuberculosis Laboratory for bacteriological work, particularly M. Stone, X. Gonzalo and A. Broda. We would also like to thank the Samara Tuberculosis Service, particularly I. Fedorin, as well as V. Kulichenko. We thank R. Hooper for expert statistical advice, S. Hoffner for bacteriological advice and S. Bentley for sequencing advice. This study was supported by European Union Framework Programme 7 (grant 201483; TB-EUROGEN), with sequencing funded by the Wellcome Trust (grant 098051) and EUROGEN. S.N. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (095198/Z/10/Z) and is also supported by European Research Council Starting Grant 260477.

Author information

Authors and Affiliations

Authors

Contributions

N.C., V.N., Y.B. and F.D. designed the study. O.I., I.K., V.N. and Y.B. recruited patients and collected epidemiological data. O.I. and I.K. performed laboratory work. N.C., S.R.H. and J.C. conducted sequence analysis. N.C., T.B., V.N. and F.D. interpreted the data. Y.B., O.I. and F.D. performed statistical comparisons. N.C. and F.D. drafted the manuscript. T.B., V.N., Y.B., O.I., I.K., S.R.H., J.P., J.B., S.N. and R.D.H. provided critical analysis and reviewed the manuscript. All authors approved the final draft.

Corresponding author

Correspondence to Francis Drobniewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Distribution of Samara isolates relative to a global collection

The phylogeny in Figure 2 is illustrated with all clades that contained only Samaran or UK XDR isolates collapsed. The ancestral node of the Beijing East European sublineage is indicated with a star. Isolates from the UK, representing global diversity, are marked with white circles. The position of the reference sequence, H37Rv, is marked ‘R’.

Supplementary Figure 2 Population genetic analysis

Genetic structuring of the data was investigated using hierBAPS, which delineates the population using nested clustering. The estimated mode of the posterior distribution had 3, 7 and 11 clusters at levels 1–3 of the hierarchy, respectively. All clusters in the mode were significantly supported when compared against alternative partitions (posterior probability of any cluster at least 100-fold higher than for the alternative). Sublineages are defined in the text.

Supplementary Figure 3 Terminal branch lengths of Beijing versus Euro-American isolates

The number of SNPs between each isolate and its last common ancestor was determined from the phylogeny illustrated in Figure 2. The frequency of each distance was calculated and corrected for the number of isolates in the lineage. All branch lengths are shown in the main panel and those less than 10 SNPs in the inset.

Supplementary Figure 4 Distribution of sublineages across Samara

The geographic origin of the sequenced patient isolates is illustrated. Samara (a) is divided into regions: North (N), South (S), East (E), Southwest (SW) and West (W, West of the river Volga); cities: Samara City (Sm), Togliatti (T) and Syzran (Sz); and the region surrounding Samara City (Volzhskyy, Vl). Samara City (b) is divided into 9 districts.

Supplementary Figure 5 Geographic versus genetic distance between isolates

(a) The distance between the home addresses of patients sharing identical isolates. Where more than two isolates were identical, the distance to the geographically closest isolate is shown. (b) The number of SNPs separating isolates from patients sharing households.

Supplementary Figure 6 Distribution of rpoAC compensatory mutations in clades A and B

The phylogenies of clades A and B are depicted on the left of each panel. Colored bands represent different polymorphisms. The first column shows nsSNPs in the rifampicin resistance determining region of rpoB and the right two columns nsSNPs in rpoAC. The genotypes illustrated are provided in full in Supplementary Table 4. The ancestral node of the clade with a significant absence of rpoAC nsSNPs is marked with an arrow. The four SNPs on this branch are shown.

Supplementary Figure 7 Prevalence and co-occurrence of mutations conferring an XDR genotype

The number of isolates harboring genotypes conferring resistance to fluoroquinolones (green) or second-line injectables (blue) are depicted as empty circles. Filled circles show the number of isolates carrying more than one of these mutations. Red filled circles are XDR.

Supplementary Figure 8 Heterogeneity at the gyrA QRDR locus

Each graph represents an isolate with ambiguous base calls between codons 88 to 94 in GyrA. The proportion of reads with alternate basecalls at each site is shown. The isolate depicted in the top left graph had two alternate alleles at one site.

Supplementary Figure 9 Distribution of non-synonymous and nonsense SNPs in three highly variable genes implicated in drug resistance: PncA, GidB and EthA

The amino acid sequence of the reference is shown; amino acid substitutions are shown below the sequence and stop codons marked with an asterisk. In PncA, residues that comprise the iron binding site (D49, H51, H57, H71) and catalytic triad (C138, D8, K96) are underlined.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–3 and 5–11 (PDF 3203 kb)

Supplementary Data Set 1

Maximum likelihood phylogeny of 1,035 M. tuberculosis isolates based on 32,445 variable sites (TXT 56 kb)

Supplementary Table 4

Polymorphisms at drug resistance loci (XLS 470 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casali, N., Nikolayevskyy, V., Balabanova, Y. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 46, 279–286 (2014). https://doi.org/10.1038/ng.2878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing