Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Meta-analysis of gene-level tests for rare variant association

Abstract

The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in 18,500 individuals genotyped with exome arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Power comparison for our approach, Fisher's method and the minimal P-value approach.

Similar content being viewed by others

References

  1. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  2. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 623–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, B. & Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kryukov, G.V., Shpunt, A., Stamatoyannopoulos, J.A. & Sunyaev, S.R. Power of deep, all-exon resequencing for discovery of human trait genes. Proc. Natl. Acad. Sci. USA 106, 3871–3876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morris, A.P. & Zeggini, E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet. Epidemiol. 34, 188–193 (2010).

    Article  PubMed  Google Scholar 

  6. Price, A.L. et al. Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet. 86, 832–838 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu, D.J. & Leal, S.M. Replication strategies for rare variant complex trait association studies via next-generation sequencing. Am. J. Hum. Genet. 87, 790–801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zawistowski, M. et al. Extending rare-variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am. J. Hum. Genet. 87, 604–617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, M.C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, D.Y. & Tang, Z.Z. A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet. 89, 354–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, X. Variance component testing in generalised linear models with random effects. Biometrika 84, 309–326 (1997).

    Article  Google Scholar 

  12. Neale, B.M. et al. Testing for an unusual distribution of rare variants. PLoS Genet. 7, e1001322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ladouceur, M., Dastani, Z., Aulchenko, Y.S., Greenwood, C.M. & Richards, J.B. The empirical power of rare variant association methods: results from Sanger sequencing in 1,998 individuals. PLoS Genet. 8, e1002496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morris, A.P. & Zeggini, E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet. Epidemiol. 34, 188–193 (2010).

    Article  PubMed  Google Scholar 

  15. Madsen, B.E. & Browning, S.R. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 5, e1000384 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hudson, R.R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Adams, A.M. & Hudson, R.R. Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics 168, 1699–1712 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nelson, M.R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Besag, J. & Clifford, P. Sequential Monte Carlo p-values. Biometrika 78, 301–304 (1991).

    Article  Google Scholar 

  21. Tennessen, J.A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kathiresan, S. et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med. 358, 1240–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Krokstad, S. et al. Cohort Profile: the HUNT Study, Norway. Int. J. Epidemiol. 42, 968–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Albrechtsen, A. et al. Exome sequencing–driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia 56, 298–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, Y.J. et al. Meta-analysis of gene-level associations for rare variants based on single-variant statistics. Am. J. Hum. Genet. 93, 236–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, S., Teslovich, T.M., Boehnke, M. & Lin, X. General framework for meta-analysis of rare variants in sequencing association studies. Am. J. Hum. Genet. 93, 42–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang, Z.Z. & Lin, D.Y. MASS: meta-analysis of score statistics for sequencing studies. Bioinformatics 29, 1803–1805 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Genz, A. Numerical computation of multivariate normal probabilities. J. Comput. Graph. Statist. 1, 141–149 (1992).

    Google Scholar 

  39. Zou, F., Fine, J.P., Hu, J. & Lin, D.Y. An efficient resampling method for assessing genome-wide statistical significance in mapping quantitative trait loci. Genetics 168, 2307–2316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coventry, A. et al. Deep resequencing reveals excess rare recent variants consistent with explosive population growth. Nat. Commun. 1, 131 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Boehnke, X. Wen and S. Zoellner for helpful discussions. This work was supported by research grants R01HG007022 from the National Human Genome Research Institute, R01EY022005 from the National Eye Institute and R01HL117626 from the National Heart, Lung, and Blood Institute. G.M.P. was supported by award T32HL007208 from the National Heart, Lung, and Blood Institute. S.K. is supported by a Research Scholar award from Massachusetts General Hospital (MGH), the Howard Goodman Fellowship from MGH, the Donovan Family Foundation and grant R01HL107816 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the US National Institutes of Health. The WHI program is funded by the National Heart, Lung, and Blood Institute, US National Institutes of Health, US Department of Health and Human Services through contracts N01WH22110, N01WH24152, N01WH32100-2, N01WH32105-6, N01WH32108-9, N01WH32111-13, N01WH32115, N01WH32118-32119, N01WH32122, N01WH42107-26, N01WH42129-32 and N01WH44221. This manuscript was prepared in collaboration with investigators from the WHI and has been approved by the WHI. WHI investigators are listed at https://cleo.whi.org/researchers/SitePages/WHI%20Investigators.aspx. The full list of PROCARDIS acknowledgments is available at http://www.procardis.org/. The Ottawa Heart Genomics Study was supported by Canadian Institutes of Health Research (CIHR) grants MOP-82810, MOP-77682 and MOP-2380941 and Canada Foundation for Innovation (CFI) grant 11966. The studies for the Malmö Diet and Cancer cohort were supported by grants from the Swedish Research Council, the Swedish Heart and Lung Foundation, the Påhlsson Foundation, the Novo Nordic Foundation and European Research Council starting grant StG-282255.

Author information

Authors and Affiliations

Authors

Contributions

D.J.L., S.K. and G.R.A. conceived and designed the study. D.J.L., G.M.P. and X.Z. carried out primary data analysis. D.J.L., X.Z. and S.F. wrote the software package implementing the proposed methodologies. O.L.H., M.N., P.L.A., A.G., H.Z., U.P., M.F., M.O.-M., C.K., R.M., H.W., C.J.W., K.H. and O.M. contributed phenotypes, exome array genotypes and analyses for the study. M.Z. conducted population genetics simulation analysis. D.J.L. and G.R.A. wrote the first version of the manuscript. All authors critically reviewed and approved the manuscript. S.K. and G.R.A. jointly supervised the study.

Corresponding authors

Correspondence to Dajiang J Liu or Gonçalo R Abecasis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–12 and Supplementary Note (PDF 4282 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Peloso, G., Zhan, X. et al. Meta-analysis of gene-level tests for rare variant association. Nat Genet 46, 200–204 (2014). https://doi.org/10.1038/ng.2852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2852

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics